
Visible Analyst Tutorial

 pg.
1

Visible® Analyst
Tutorial

Visible Systems Corporation
24 School Street, 2nd floor

Boston, MA 02108
617-902-0767

https://www.visiblesystemscorp.com

https://twitter.com/VISIBLECorp

Email: contact@visiblesystemscorp.com

https://www.visiblesystemscorp.com/
https://twitter.com/VISIBLECorp

Visible Analyst Tutorial

2

Enterprise-wide Analysis, Design
and Planning for Improvement.

 4

Information in this document is subject to change without notice and does not represent a commitment on the
part of Visible Systems Corporation. The software described in this document is furnished under a license
agreement or non-disclosure agreement. The software may be used or copied only in accordance with the
terms of this agreement. It is against the law to copy the software onto any medium except as specifically
allowed in the license or non- disclosure agreement.

No part of this manual may be reproduced or transmitted in any form or by any means, electronic or otherwise,
including photocopying, reprinting, or recording, for any purpose without the express written permission of
Visible Systems Corporation. Visible Systems Corporation makes no representations or warranties with
respect to the contents or use of this manual, and specifically disclaims any express or implied warranties of
merchantability or fitness for any particular purpose. Names, dates, and information used in examples in this
manual are fictitious and only for examples.

Copyright 2008 – 2023 by Visible Systems Corporation, All rights

reserved. Printed and bound in the United States of America.

This manual was prepared using Microsoft Word for Windows.

Visible Analyst
Tutorial on Structured Methods, Repository Management and The Zachman

Framework Visible Analyst® is a registered trademark of Visible Systems

Corporation.

The Zachman Framework illustration on the cover page of this tutorial was printed and used with the
permission of the Intervista Institute © 2004 (www.intervista-institute.com). Microsoft and Windows are
registered trademarks of Microsoft Corporation. Other product and company names are either trademarks or
registered trademarks of their respective owners.

http://www.intervista-institute.com/

Visible Analyst Tutorial

5

Dear Colleagues:

Thank you for your time in selecting our product, the Visible Analyst. At Visible, we take your
time and effort seriously. To that end, we pride ourselves on delivering the most appropriate,
value-oriented solutions. We feel that we offer the very best in product support that often
differentiates us from our competitors.

As you read though the tutorial, please take the time to understand that our approach to
software development is one of a model driven approach. Within the framework of this
approach, Visible, in part, supports the Model Driven Architecture (MDA) as defined by the
Object Management Group (OMG). This group, commonly referred to as the OMG, is an open
membership, not-for-profit consortium that produces and maintains computer industry
specifications for interoperable enterprise-wide applications. For more information about the
OMG and in particular their MDA specification, please reference their web site at
http://www.omg.org/mda/.

In conjunction with a model driven approach, Visible has incorporated a framework to enable
you to better plan and manage your Enterprise Architecture effort. In this edition, The
Zachman Framework, is the framework of choice. However, you can customize the Visible
Analyst to implement other frameworks like, for example, the US Federal Enterprise
Architecture Framework (FEAF).

http://www.omg.org/mda/

Visible Systems Corporation. Visible Analyst, Visible Developer, Visible Data Governance, Visible Web Portal, Visible Self
Service Data Discovery, Visible Sight (Context-driven business insights), Razor SCM, Polaris (Task Management).

7

Visible Analyst Tutorial

Getting to Know Visible Analyst

INTRODUCTION
The Visible Analyst Zachman Edition provides a Model Driven approach for defining,
designing, building, testing, documenting and supporting Enterprise Architecture (EA),
information systems and software products. Model Driven Architecture (MDA) tools are
based on logical dissection of the real world into understandable models, processes and
components. MDA tools provide mechanisms for evaluating current information activities,
defining proposed changes, producing and validating new information processes and focusing
on changes that will enhance the performance and operation of the organization. The
successful use of MDA tools requires an understanding of the underlying concepts and logic
and a comfortable knowledge of the operation and use of the MDA tool.

Visible Analyst has been created to make the implementation of MDA techniques a logical,
flexible, natural and easy-to-perform process. Visible Analyst is a seamless MDA tool that
integrates all phases of planning, analysis, design, code generation, and reverse engineering.
Visible Analyst provides facilities for the development of function, object/class, state
transition, data, data flow (process), activity, Use Case, sequence, collaboration, and structure
chart (product) models for an information system. With the introduction of the Business
Process Modeling Notation (BPMN) the Visible Analyst provides a modeling notation that
can be communicated to and understood by all business users, from the business analysts
developing the models, to the technical analysts implementing the model processes, to the
business people who manage and monitor the processes. An integrated repository containing
all defined model elements, extensive additional component definitions and free-form notes
and definition fields provides a continuous life-cycle library of the design and development
process. The Visible Analyst repository is used for reports of project content and to generate
various forms of schema and application software code.

These lessons have been designed to lead you through the Visible Analyst mechanics and to
demonstrate how easy Visible Analyst is to use. These lessons cover the entire development
process, from drawing functional diagrams to generating program code. You can follow the
lessons in sequence or you can select just the ones of interest to you. Like Visible Analyst
itself, you have the flexibility to use any piece of the tool in any order that is reasonable
within the project.

Getting to Know Visible Analyst

 Page 2

The tutorial also provides you with some insight into MDA concepts and underlying logic.
These concepts are basically simple and logical. They allow you to break the complex real
world into smaller and more manageable chunks that can be defined quickly and then be used
to build operational pieces that work in the complex real world. Each of the MDA models
provides a different view of the real world. Visible Analyst ties these models together and
provides a vehicle for using them to define and evaluate current information operations.
Proposed changes in the information processes, procedures and sequences are reflected into
the MDA models and then are used to build a new set for the proposed change operations.
The analysts, designers, developers and users interact with the Visible Analyst models and
data repository to verify and validate the information steps and procedures for their
organization and operations.

Once the architecture of the new information system is considered sound and solid, the
software designer moves to defining and building the new product components and the
software code. Visible Analyst supports the development of physical programming modules
through the structure chart model. It also supports the definition and recording of pseudo code
in the Visible Analyst repository. From these definitions and the data model, Visible Analyst
generates database schema, SQL code and application shell code. Test plans, sequences, test
cases and scenarios can also be generated in the repository notes fields.

One new feature of the Visible Analyst has been the additional support for the Business
Process Modeling Notation based on the Business Process Modeling Initiative developed by
the Object Management Group (omg.org). The complete specification can be downloaded
from the OMG website, www.omg.org. The primary goal of BPMN is to provide a modeling
notation that can be communicated to and understood by all business users, from the business
analysts developing the models, to the technical analysts implementing the model processes,
to the business people who manage and monitor the processes. The BPMN models describe
the sequence of business processes with support for parallel and conditional behavior.

FAST TRACK USERS
Those who like to work on the Fast Track should read Lesson 5 - Diagramming Basics and
follow the steps for creating a project, creating a diagram, and some optional settings that are
available with Visible Analyst. Lesson 5 gives you the basic skills for working with Visible
Analyst. We recommend that you work through the other lessons to discover the more
advanced features that make Visible Analyst a powerful tool. Throughout the tutorial are
references to features that are not demonstrated in the tutorial but that may be of interest to
you. You can find more information about these features in the Operation Manual, which can
be downloaded from our Web site using this link
https://www.visiblesystemscorp.com/Products/Analyst/manual.pdf. The online help
feature in Visible Analyst, accessed from the Help menu or by pressing F1, also provides you
with more information on the referenced subjects.

http://www.omg.org/
https://www.visiblesystemscorp.com/Products/Analyst/manual.pdf.

Visible Analyst Tutorial

[Type here] [Type here] [Type here]

Note
 Since Visible Analyst is available in multiple configurations, the software you

purchased may not include all of the diagram types or advanced features
described in these lessons. The basic drawing techniques apply to all diagram
types, and you are encouraged to work through the brief exercise in Lesson 5 -
Diagramming Basics. Thereafter, you can skip chapters that do not apply to your
Visible Analyst package.

OVERVIEW OF MDA CONCEPTS
MDA concepts involve creating and defining different models or views of the real world and
then using these models to analyze and develop changes and modifications to the information
processes of the organization. Some of the models provide definitions of factual items such as
business functions, objects and data entities; others show how things flow, connect or relate to
one another. Some of the models evolve and expand to match reality and others are done as
snapshots, showing as-is and then as-proposed operations. The views are composed
graphically using symbolic objects, line connectors and some rules of logic and structure. The
objects are given names called labels that populate the data repository with entries that can be
retrieved, expanded, detailed and used to define and document the contents of the project.
There are logic rules for many parts of the models. The models can be tested and evaluated
for completeness, consistency, rule compliance and other factors. All of the models and the
repository are interrelated, and many share common components such as databases, objects
and/or actions. The development of the models is iterative, often requiring several sessions
before the models are complete and realistic. The ability to move from one model to another
and to work on different ones at different times is critical to a successful MDA tool.

The rules of MDA deal with the checking of consistency and logical structures such as
naming and complete linkages. Errors found in models are reported during the Visible
Analyst analyze process. These errors should be corrected to maintain consistency and
accuracy of the models. However, Visible Analyst, unlike software compilers, allows you to
continue with any reasonable MDA operation without waiting until you have corrected all
errors. This allows you to continue progress on the project and its components. However, it
also leaves you responsible for returning and correcting your errors.

The Basic MDA Models
The basic MDA models include:

Functional Decomposition Model (also known as a Business Model) - Shows the business
functions and the processes they support drawn in a hierarchical structure.

Getting to Know Visible Analyst

 Page 4

Entity Relationship Model (also known as a Data Model) - Shows the data entities of the
application and the relationships between the entities. The entities are things and the
relationships are actions. The data attributes can be defined for the entities via the repository
and then shown on the diagram. Entities and relationships can be selected in subsets to
produce views of the data model.

Object Model (also known as an Object Class Model) - Shows classes of objects, subclasses,
aggregations and inheritance. Defines structures and packaging of data for an application.

State Transition Model (also known as the Real Time Model) - Shows how objects
t r a n s i t i o n to and from various states or conditions and the events or triggers that cause them
to change between the different states.

Process Model (also known as the Data Flow Diagram) - Shows how things occur in the
organization via a sequence of processes, actions, stores, inputs and outputs. Processes are
decomposed into more detail, producing a layered hierarchical structure.

Product Model (also known as a Structure Chart) - Shows a hierarchical, top-down design
map of how the application will be programmed, built, integrated and tested.

Use Case Model – Shows the relationship between a user and a computer system.

Activity Model – Is a special form of state diagram where states represent the performance of
actions or sub-activities. Transitions are triggered by the completion of the actions or sub-
activities.

Sequence Model – Shows how objects collaborate in some behavior.

Collaboration Model – Shows an interaction organized around the objects in the interaction
and their links to each other.

Business Process Modeling Notation- Provides a modeling notation that can be
communicated to and understood by all business users, from the business analysts developing
the models, to the technical analysts implementing the model processes, to the business
people who manage and monitor the processes.

Repository or Library Model (also known as the Project Database) - Keeps the records of
all recorded objects and relationships from the diagrams and allows for the definition of
detailed specifics and extensions of the individual items. Used for evaluation, reporting and
generation of details about the project and its products.

Visible Analyst Tutorial

[Type here] [Type here] [Type here]

Visible Analyst Choices
Today systems designers have multiple choices. They can follow the Structured Analysis and
Structured Design (SA/SD) approach and build on functions/processes, data models and
product concepts; or they can follow the object-oriented approach and build class hierarchies,
dynamic states and functional/process models. Both approaches can build better information
systems and both cover similar aspects of information systems definition. However, both use
different sequences of effort and focus on different aspects of the project. Visible Analyst
allows you to choose either approach or to combine the approaches to develop a
comprehensive product definition, design and development mechanism.

There are five keys to using Visible Analyst, or any MDA tool. The first key is to develop the
discipline to apply and follow the steps and procedures of the technique. The second key is to
develop skills in conceptualizing the MDA models to represent the real world requirements.
The third key is to be consistent in how you define and describe the real world. The fourth key
is to strive to be complete in the definition of all of the major parts of a real world application.
The fifth key is to progress from the conceptual to the operational specifications and
construction of a working information systems process.

VISIBLE ANALYST OVERVIEW
Visible Analyst is a Microsoft Windows application. Versions 7.1 and higher of Visible
Analyst work with Windows NT, 2000, 2003 Server and XP while VA2008 is also VISTA
compatible. This section defines the overall structure of Visible Analyst and identifies some
of its key operational characteristics.

Visible Analyst Architecture
The basic components of Visible Analyst are: a set of diagramming tools, a rules module, and
a repository module. Diagramming tools are used to construct the ―blueprints of your target
system. These lessons guide you in the creation of diagrams and provide you with basic
information on the uses of the diagrams.

A system is designed and constructed according to rules, and the rules module manages the
methodologies of Visible Analyst tools for you. Visible Analyst allows you to choose the rule
set you prefer to use as a guideline for the development of your system. These rules are
important in determining the appearance of your diagrams, as well as the entire structure of
your system. For the purposes of the tutorial, you are introduced to the supported techniques
and learn how to designate the rule set to use and the different symbol types used for each
rules methodology.

Getting to Know Visible Analyst

 Page 6

Standard
Tool Bar

View
Tool Bar

Diagram
Tool Bar

Font Tool
Bar

Control
Bar

Object
Browser

Diagram Workspace

Help Bar
Project Root

Figure 1-1 Visible Analyst Workspace

The repository module controls the individual repositories of each of your projects. A
project‘s repository stores detailed information about objects that are used in developing a
system. An object in the repository includes processes, entities, relationship lines, classes, etc.
The type of information contained in the repository for each object includes description,
composition, values and meanings, location references, and other very specific detail
information (see Lesson 17 – Working with The Repository Functions for details). The
repository makes Visible Analyst a very powerful systems development tool. Visible Analyst
is much more than just a diagramming tool; its repository and rules set provide definition,
documentation, and consistency capabilities for the entire system. Visible Analyst has
advanced features enabling you to generate reports and code for your target system, using the
information contained in a project repository.

Windows Version Features

This section highlights some of the Windows-specific features of Visible Analyst.

The Application Workspace

All work in Visible Analyst is done either in the main application workspace, shown in Figure
1-1, or in the repository, described in Lesson 16 - Repository Functions.

Visible Analyst Tutorial

[Type here] [Type here] [Type here]

Windows Configuration

Visible Analyst configuration features controlled through Windows include the hardware
configurations, desktop colors, available printer drivers, and available fonts. Changes or
additions to these features can be made through Windows and are reflected in Visible Analyst.

Multiple Document Interface

The Windows Multiple Document Interface (MDI) allows multiple diagrams to be open at
one time. Open diagrams can be of the same or different diagram types (data flow diagrams,
entity relationship diagrams, etc.). Diagrams may be maximized, taking up the entire
workspace, sized so that several diagram windows are visible, or minimized to icons
appearing at the bottom of the application workspace. Any window larger than an icon is
editable. You can cut, copy, and paste to and from the Windows Clipboard to move objects
between diagrams and even between other Clipboard-aware applications. (See Figure 1-2.)

Figure 1-2 Visible Analyst Multiple Document Interface

Getting to Know Visible Analyst

 Page 8

Note
 Users not familiar with MDI Windows programs should take note: there is a

difference between the diagram Control menu button and the Visible Analyst
Control menu button. The former is in the top left corner of the diagram
window, or to the left of the File menu if the diagram is maximized. This
Control menu contains functions that affect the diagram only, such Maximize,
Close, etc. The latter is in the top left corner of the Visible Analyst window. The
Visible Analyst Control menu affects the whole Visible Analyst window and
program.

Selecting a Diagram Object
A diagram object is anything that appears on a diagram: symbol, line, text, or block. When
you click on an object with a mouse button, it becomes the current or selected object and you
can perform various operations on it. There are five different ways to select an object. The
following paragraphs describe the effect of selecting an object with the left mouse button, the
right mouse button, a double-click with the left mouse button, the TAB key and selecting a
Block.

Left Mouse Button

Clicking on an object with the left mouse button selects it. The object changes color to show
that it has been selected allowing you to make changes to the object or to move the object.
When a symbol or line is selected, text labels for that object are automatically highlighted.

Right Mouse Button

Clicking on an object with the right mouse button also selects it. In addition, the Object menu
appears containing all of the functions that can be performed on that object.

Notes

 Unless stated to the contrary, instructions to click a mouse button refer to the left
button. Instructions for the right button are explicitly mentioned.

 Left-handed mouse users: if you use a mouse with the buttons reversed, you should

reverse references to left and right mouse buttons in this text.

Double-Click

If you double-click on an object with the left mouse button, the repository entry for that object
appears. If the object is unlabeled, a dialog box for labeling the object is displayed. Double-
clicking is also used to indicate the end of a line.

TAB Key

Visible Analyst Tutorial

[Type here] [Type here] [Type here]

To highlight only the text label for a selected symbol or line, press the TAB key until the
appropriate item is highlighted. (If the label is located outside the symbol, you can click on it
directly.) Continuing to press the TAB key sequentially selects each object on the diagram.

Selecting a Block

To select a block, meaning a group of objects, on a diagram, click and hold the left mouse
button and drag the mouse to draw a box around the objects. All objects completely contained
within that box change colors to show that they are selected. Once a block is selected, you can
perform various functions on the block such as cut, paste, move, change text settings for
contained objects, and other actions.

Deselecting Objects

To deselect any object or block, simply click the left mouse button on an empty area
anywhere on the diagram workspace outside of the object or block. The items that had been
selected return to their usual color. You can also use the Clear function on the Edit menu.

Shortcut Keys

Shortcut keys provide fast access to functions without using the menus. Some of the active
shortcut keys used in Visible Analyst are standard Windows shortcut control key sequences,
such as CTRL+P, which is the command for Print; others are specific to Visible Analyst. All
available shortcut keys are listed here.

CTRL+A Analyze Analyzes a diagram or entire project.
CTRL+C Copy Copies to clipboard.
CTRL+D Define Accesses the repository.
CTRL+E Connect Draws lines between selected symbols.
CTRL+F Find Accesses the search mode.
CTRL+L Lines Sets the cursor to line drawing mode.
CTRL+N New Diagram Creates a new diagram.
CTRL+O Open Diagram Opens an existing diagram.
CTRL+P Print Prints the current diagram or queue contents.
CTRL+Q Report Query Generates a custom repository report.
CTRL+R Reports Generates a standard repository report.
CTRL+S Save Saves the current diagram.
CTRL+T Text Sets the cursor to text adding mode.
CTRL+U Clear Deselects diagram object or block.
CTRL+V Paste Pastes from Clipboard.
CTRL+T Snap Symbols Aligns selected symbols in a row.
CTRL+X Cut Cuts to Clipboard.
CTRL+Z Undo Erases partially drawn or undoes moved line.
DEL Delete Deletes object from diagram.
F1 Help Displays context-sensitive help.
ALT+R Delete Project Deletes a project with no project files.

Getting to Know Visible Analyst

 Page 10

SHIFT+F1 Menu Help Enters Help mode for menu items.
SHIFT+F10 Object Menu Displays repository object menu.

Another standard Windows shortcut method for accessing a menu item without using the
mouse is to press the ALT key followed by the underlined letter of the menu title or menu
item that you would like to access. For example, to access the File menu, press the ALT key
followed by the F key. It is not necessary to hold down the ALT key while pressing the F key.

Control Bar

The control bar, shown in Figure 1- 3, is located above the diagram workspace and gives you
quick access to commonly used functions and types of objects that can be added to a diagram.
The control bar can contain up to four tool bars.
 The standard tool bar contains basic buttons, such as Select Project, Open Diagram, etc.,

common to most Windows applications.
 The diagram tools tool bar contains the symbol, line, and text buttons appropriate for the

current diagram.
 The view tool bar contains controls that change the zoom level and entity/class view

level.
 The font tool bar contains controls that allow changing the current font characteristics,

such as font type, font size, etc.

You can customize the control bar by selecting Control Bar from the Options menu to
display the Customize Control Bar dialog box. Using this dialog box, you can select the tool
bars to be displayed and select control bar options such as Show Tooltips, Large Buttons, Flat
Buttons, and Hot Buttons. You can also right-click the control bar itself to display a
properties menu that allows you to toggle the individual tool bars on or off or to select the
Customize option. To change the size and position of the tool bars, click the left mouse
button on the ―gripper (the two vertical bars ‖ at the beginning of each tool bar) and drag the
tool bar to the desired position. From the Customize Control Bar dialog box, you can also
―undock ‖ the diagram tools tool bar so that it appears in its own floating window.

The  button (shown in Figure 1-3) is used to change into selection mode (also called editing
mode). In selection mode, objects can be selected on the diagram to be changed or moved, or
a box can be drawn around many objects on a diagram, for moving, cutting and pasting, or
changing text settings for groups of objects. Click one of the drawing mode buttons, and you
can add that type of item to the diagram. The object types include symbols, lines, couples, and
caption text. When you choose one of the drawing mode items from the control bar to add to
your diagram, the cursor automatically changes to indicate that you are either in symbol, line
or couple adding mode, or caption text adding mode. Specifically, this means that while the
cursor is positioned inside the diagram workspace and it is something other than an arrow,
which indicates selection mode, clicking on the mouse adds an object to the diagram.

Visible Analyst Tutorial

[Type here] [Type here] [Type here]

Figure 1-3 The Control Bar for Entity Relationship Diagrams with All Tool Bars Displayed

For example, when the diagram tools tool bar is displayed on the control bar, you can easily
select the particular symbol you want to add to the diagram. A symbol is added to your
diagram centered at the cursor location anytime you click on the diagram workspace while the
cursor indicates symbol drawing mode.

Figure 1-4: The Symbol Cursor

Figure 1-5: The Line Cursor

Figure 1-6: The Text Cursor

Figure 1-7: The Couple Cursor

Help Bar
As you move through the Visible Analyst menus, a line of text appears on the help bar at the
bottom of the application workspace that briefly explains what that menu item does. The
current zoom level, current project and current object are also displayed. You can toggle this
feature off and on from the Options menu.

Object Browser
From the Options menu, you can choose to have the Visible Analyst object browser displayed
on your screen. The object browser displays a list of all the objects in the repository in a
resizable window. When there are no diagrams open, or the current window is the diagram
list, all objects are displayed. When a diagram is open, only those objects that are valid for
that diagram type are displayed. If an object appears on the open diagram, it is displayed in

Getting to Know Visible Analyst

 Page 12

bold. Double-click on a folder in the list to expand or collapse it; double-click on an object in
the list to display the Define dialog box. You can also click on an object in the list and drag it
onto your diagram. To resize the object browser, click on the right margin of the browser and
drag to the desired size.

Menus
The menus are arranged in nine groups for browsing and selecting the various features of
Visible Analyst. (Refer to Figure 1-1.)

File Menu

The File menu contains the functions for accessing and creating projects and diagrams. This
includes all of the functions that cause the opening of another diagram, such as Nest, Spawn,
and Page. (These functions are explained under the specific diagram type where each is
used.) It also includes a list of Recent Diagrams and Recent Projects. The Save, Print,
and Exit functions are also found in the File menu. If you are using a network version,
information about network activity and modifying the user list is contained in the File menu.
If you purchased a copy of the Zachman Framework Edition, the framework can be opened
and closed using the Zachman Framework option.

Edit Menu

The Edit menu contains the standard Windows editing functions including Cut, Copy, Paste,
Find and Delete. There is also an Undo function for removing partially drawn lines and
undoing a move line operation. The Strategic Planning options allow you to add a New
Statement, Promote, Demote, Move Up, or Move Down, a strategic planning statement.

View Menu

The functions contained in the View menu allow you to change the appearance of the active
diagram. There are functions to change the zoom level and to give you the ability to change
the items displayed on a diagram, including Show Line Names, Show Symbol Names,
Show Discriminators, Show Statement Types, Show Priority, Show Description,
Class and Entity Display Options, Physical Schema, Events, and Messages. Also on
the View menu are Grid and Ruler, functions that make it easier to position objects accurately
on a diagram.

Options Menu

The Options menu contains functions that allow you to change default settings for Visible
Analyst. For diagram drawing and manipulation settings, the functions include automatic
labeling of symbols and lines, Line Settings defaults, Text Settings defaults and diagram
Colors, as well as on/off settings for Security, the Help Bar, the Object Browser, and the
Control Bar. The Options menu also includes settings for interaction diagrams, model
balancing rules, SQL schema and shell code generation, DDS name translation, user-defined

Visible Analyst Tutorial

[Type here] [Type here] [Type here]

attribute and object definition, planning statement types, Zachman Framework cell settings
and symbol template settings.

Repository Menu
All of the selections included in the Repository menu are functions performed on the
information contained in a project’s repository. These include Define, which allows
repository access, schema and shell code generation, schema / model comparison, Key
Analysis and Key Synchronization, Model Balancing, and repository Reports. The
Divisions function is used with the Enterprise Copy feature and is explained in the on-line
Help. The Divisions and Enterprise Copy feature are not available in the Visible Analyst
Student edition.

Diagram Menu
The Diagram menu contains functions for selecting, manipulating, and analyzing diagram
objects. These include functions for selecting Symbols, Lines, or Text to add to a diagram,
as well as functions for changing or stylizing a selected item on a diagram. The function for
analyzing the diagrams according to the selected rules methodology, modifying the diagram
settings and the function for modifying an existing view are also contained in the Diagram
menu.

Tools Menu
The Tools menu contains the various functions that can be performed on a project. These
include Backup, Restore, Copy Project, Delete Project, Rename/Move, Import, Export,
and copying information between projects. The utility for assigning user access to the multi-
user version of Visible Analyst is also found in the Tools menu. The Enterprise Copy and
Enterprise Tag Maintenance features are not available in the Visible Analyst Student Edition
but are explained in the on-line Help.

Window Menu
The Window menu allows you to change the arrangement of the open diagrams. Diagrams
can be automatically arranged in a Tile, Cascade, or minimized (icon) format. You can also
switch between open and minimized diagrams.

State Transition Diagramming

 Page 14

Figure 1-8 Cascaded Multiple Diagram Windows

Help Menu
The Help menu allows you to access the Help features, product and user information, and
Visible Analyst on the Internet.

Note

 Detailed information about each of the menu options can be found in the Visible
11-1 Completed State Transition Diagram

Activity Diagramming

[Type here] [Type here] [Type here]

Activity Diagramming

OVERVIEW
The activity diagram describes the sequencing of activities, with support for both conditional
and parallel behavior. An activity diagram is a special form of a state diagram in which the
states represent the performance of actions and the transitions are triggered by the completion
of the actions. The activity diagram can be attached to a class or to the implementation of an
operation or a Use Case. The purpose of an activity diagram is to focus on flows driven by
internal processing (as opposed to external events). Usually activity diagrams are constructed
in situations where all or most of the events represent the completion of internally generated
actions.

DEFINITIONS
The main components of an activity diagram include:

Activity An activity is a state of doing something. It could be a task such as

receiving a payment, or the execution of a software routine, such
as a method on a class. It is represented by a rectangle with
rounded corners.

Decision A decision is used when more than one activity can be performed

next, based on a certain condition. There is a single incoming
transition and several guarded outgoing transactions. The guards
are mutually exclusive and so only one of the outgoing transactions
is followed. A diamond denotes the decision start and end.

Synchronization Bar A synchronization bar is used to show parallel activities. It is

represented by a black bar with one or more input transitions and
one or more output transactions, that are all taken in parallel. This
means that the sequence of the output transactions is irrelevant. In
order to show that all the parallel activities need to be completed
before the following activities, use a second synchronization bar
that has multiple incoming transactions and a single outgoing
transaction. The outgoing transaction is taken only when all the
incoming transactions are completed.

Activity Diagramming

 Page 16

Start The start object designates the starting point of the activity diagram
and is represented by a filled circle.

End The ending point of the activity diagram is represented by a filled

circle inside a hollow circle.

Swimlane A swimlane is a way of designating responsibility for each action
state. An activity diagram may be divided visually into
''swimlanes''; each separated from neighboring swimlanes by
vertical solid lines on both sides. Each action is assigned to one
swimlane.

Transition Represented by a solid line with a stick arrowhead, transitions

may cross swim lanes. Transitions are implicitly triggered by the
completion of the preceding them. The transitions may include
guard conditions and actions. It is labeled by a transition string of
the form ‗Event [guard]/Action‘. All components of the transition
string are optional

RELATIONSHIPS
The relationship structure in an activity diagram is directional arrows showing how the order
in which the activities occur. The completion of one activity triggers the flow to move on to
the next activity as dictated by the arrows.

Activity Diagramming

[Type here] [Type here] [Type here]

Figure 12-1 Activity Methodology Symbols

DEVELOPING YOUR ACTIVITY DIAGRAM
An activity diagram is a variety of activity states arranged in the sequence in which they must
be performed. For our tutorial example, we look at the process of getting a driver‘s license.

Designating the Starting Point
For every activity diagram there has to be a designated starting point shown on the diagram
with a filled circle.

Set the Zoom Level: 1 From the View menu, select 66% zoom
so that you can see all of the needed
workspace.

Activity Diagramming

 Page 18

Create a New Diagram: 2 From the File menu, select New
Diagram.

 3 Select the diagram type Activity.

 4 Select Standard Workspace.

 5 Click OK.

Add Start: 6 Click the fourth symbol button, the filled
circle, on the control bar. This is the start
object.

 7 Place the cursor in the top center of the
workspace, and click the left mouse
button. The starting point is drawn on the
diagram.

Save the Diagram: 8 Save the activity diagram with the label
―Driver‘s License Activity Diagram‖.

Adding A Synchronization Bar
A synchronization bar is helpful in depicting activities that are performed in parallel. For
instance in our example, the receiving clerk can receive the application form and proof of
insurance simultaneously. It is not important which order they are received in. Furthermore,
the next activity of validating the applicant can be performed only after both application and
insurance proof have been received. The synchronization bar denotes the starting and ending
of activities performed in parallel.

Add Synchronization Bar: 1 Click the third symbol button, the bar, on
the control bar. This is the
synchronization bar that denotes forks
and joins.

 2 Place the cursor under the start circle and
click the left mouse button. A
synchronization bar is drawn.

 3 Add the other bar as shown in the Figure
12-2.

Activity Diagramming

[Type here] [Type here] [Type here]

Save the Diagram: 4 Save the activity diagram.

Adding Activities
Activities are the basic building blocks of the activity diagram. By determining what activities
need to be performed, and arranging them in the order in which they are performed, with
support for conditional and parallel behavior, the activity diagram is complete. Activities are
represented as rectangles with the activity described inside the rectangle.

Add Activities: 1 Click the first symbol button, the
rectangle, on the control bar. This is the
activity (state) object.

 2 Place the cursor under the start circle
and click the left mouse button. An
activity is drawn.

 3 Label this activity ―Receive Road Test
Form/Learner‘s Permit‖.

 4 Add the rest of the activities as shown in
the Figure 12-2.

Save the Diagram: 5 Save the activity diagram.

Adding Decisions To A View
In a process, some activities may occur only if a certain condition is met; otherwise certain
other activities are carried out. The decision diamond marks the beginning and end of
conditional behavior. In our example, only if an applicant is deemed valid does the testing
procedure continues; otherwise the applicant is informed why his/her application was deemed
invalid and the process ends there.

Add Decision: 1 Click the second symbol button, the
diamond, on the control bar. This is the
decision object.

 2 Place the cursor under the activity
―Validate Applicant‖ and click the left

Activity Diagramming

 Page 20

mouse button. A decision symbol is
drawn.

 3 Add the rest of the decisions as shown in

Save the Diagram:

4

the Figure 12-2.

Save the activity diagram.

Adding Stopping To A View
The stopping point for a process is denoted with a filled circle inside a hollow circle.

Add Stop: 1 Click the fifth symbol button, the filled
circle inside a hollow circle, on the
control bar. This is the ending object.

 2 Place the cursor under the activity
―Validate Applicant‖ and click the left
mouse button. An ending symbol is
drawn.

 3 Add the rest of the decisions as shown in
the Figure 12-2.

Save the Diagram: 4 Save the activity diagram

Adding Transitions To A View
Transition lines are arrows that communicate the order in which the activities need to be
carried out. They can be labeled or left unlabeled.

Turn Off Auto Label Lines: 1 Select the Options menu and click
Auto Label Lines, so that it is not
checked anymore.

Add Transition: 2 Click the symbol button labeled
‗event‘, the horizontal arrow, on the
control bar. This is the transition
symbol.

Activity Diagramming

[Type here] [Type here] [Type here]

 3 Place your cursor on the start object.
Click the left mouse button and hold
down as you drag the cursor down to
the first synchronization bar.

4 Add the rest of the transitions as shown
in the Figure 12-2.

Save the Diagram: 5 Save the activity diagram.

Adding Labels to Transition Lines

Select the Transition to be
labeled:

1 Click on the transition leading to the
activity ―Test Vehicle Knowledge‖.

Add Transition: 2 Click the right mouse button and
choose Change Item.

 3 Type ‗valid‘ in the Event Name field
and click OK.

 4 Add the rest of the labels as shown in
the Figure 12-2.

Save the Diagram: 5 Save the activity diagram.

Adding Swimlanes To A View
Swimlanes depict responsibility. One can use swimlanes to depict which people or
departments are responsible for which activities. In programming, this translates to assigning
a class to each activity. In our example, we can identify two DMV departments that would be
responsible for the activities in our diagram. The testing department would take care of
performing the actual tests, and evaluating the test results; while DMV administration staff
would perform the other duties such as accepting applications, validating applicants, issuing
licenses to qualified applicants, etc.

Add Swimlane: 1 Click the sixth symbol button, the

Activity Diagramming

 Page 22

rectangle, on the control bar. This is the
swimlane object.

 2 Name this swimlane ―DMV
Administration‖.

 3 Place the cursor above the start object
and click the left mouse button. A
swimlane symbol is drawn.

 4 Click the arrow to activate select mode.

 5 Select the swimlane you just drew and
expand its size by a clicking and
dragging at its ends. Make sure the
activities that are DMV
Administration‘s responsibility fall in
this swimlane as shown in Figure 12-2.

 6 Add the other swimlane as shown in
the Figure10-2.

Save the Diagram: 7 Save the activity diagram.

Activity Diagramming

[Type here] [Type here] [Type here]

Figure 12-2 Activity Diagram

Activity Diagramming

 Page 24

Working with the Repository Functions

[Type here] [Type here] [Type here]

Working with the Repository Functions

OVERVIEW
This unit helps familiarize you with the operation of the Visible Analyst repository and shows
you the power of an online, interactive database for systems analysis, design and data
modeling. The TEST project used in the previous lessons is used as the basis for your
exercises.

The repository is a powerful tool for creating and managing the narrative portions of a
system‘s specification. A project repository is used to provide an entry location for all project
documentation. Each graphical entry on your diagrams has an automatically created
corresponding entry in the project repository, as do any items entered into a Composition or
Alias field.

You have the ability to thoroughly define all of your graphical entries in the repository or to
simply enter notes about them in the Notes field. As an integrated part of Visible Analyst, the
repository operates in parallel with the diagramming functions to accomplish data
decomposition logically. It contains powerful data management, text editing, import/export,
and report facilities. By using it, meaning can be ascribed to diagrams and an asset of ever-
increasing value can be created. After defining items, changing entries and entering notes, you
can generate reports from this information in many different forms.

When you finish defining your data and processing, the repository also allows you to put it
into an ASCII file and export it. The ASCII file can then be sorted to move data specifications
to your database and process specifications to your text editor for writing code. (The Shell
Code Generation utility can also be used for this purpose.)

Note

 Users of the Educational and Demonstration versions of Visible
Analyst cannot add items directly into the repository. First add the
object to the diagram, and then edit it into the repository.

Working with the Repository Functions

 Page 26

Figure 17-1 Blank Repository Dialog Box, Page One

REPOSITORY BASICS

Repository Control Buttons
The repository control buttons (see Figure 17-2) are always displayed at the bottom of the
repository dialog box. Each of the button functions is accessed by clicking on the button or, as
is customary in Windows, by using its keyboard shortcut by holding down the ALT key and
pressing the underlined letter to execute the button function. Only the functions available to
you at a given time are active; the others are grayed. The button functions are:

Working with the Repository Functions

[Type here] [Type here] [Type here]

Figure 17-2 Repository Dialog Box Control Buttons

SQL This button opens the Generated SQL for View dialog box. This
dialog box displays the SQL generated for the current view object
based on the view table and column specifications selected when
creating the view, as well as the current SQL dialect. This button
is active only when the entry type is View.

Dialect This activates the RDBMS SQL Dialect dialog box. From there,

you can change the current SQL dialect.

Delete This deletes the current repository entry from the database. An
entry can only be deleted when it has no location references,
meaning that it does not appear on a diagram nor as an attribute of
another repository item.

Clear This clears the display of an entry and displays a blank

repository dialog box. This allows you to Search for an existing
entry or add a new entry. If you have made changes, you are
prompted to save them before clearing. Your current location in
the repository remains unchanged.

Next This displays the next sequential repository entry that meets the

repository search criteria (see below).

Prior This displays the previous sequential repository entry that
meets the repository search criteria.

Save This saves all changes made to an entry.

Exit This or the ESC key exits from the repository.

Search This initiates a search for a particular entry in the repository.

The procedure is explained in the section on Search Capabilities.

Expand This allows you to expand or contract the display size of some
Contract fields. The fields that normally display four lines can expand to

display 15.

Working with the Repository Functions

 Page 28

Jump This allows you to jump immediately to another entry that is
referred to in the current one. This feature is described in the
section on Navigation Capabilities.

Back This button provides a means of jumping to the previous repository

entry. You can then continue to move backwards displaying
previous repository entries.

File This allows you to insert text from a DOS file at the cursor

position or to copy highlighted text to a DOS file. It is explained in
further detail in the Visible Analyst Operation Manual and in the
online help system.

Copy This button provides a means of copying the current object.

History This provides a means of jumping back to a previously displayed

repository object. A list is kept of every object definition that has
been displayed. If you choose this button, the History dialog box
appears and you can jump between entries by double-clicking on
an entry. The maximum is 500 objects.

Help(?) This displays context sensitive help about the repository. You

can also press F1 to activate the help system.

Search Criteria This allows you to specify how the repository is to be searched.
It is explained in the section on Search Capabilities.

Other buttons that may be displayed on the Define dialog box are:

Primary Key If the current object being examined is an entity type, the primary

key button is displayed to the left of the Composition/Attributes
field.

Attributes Details This button provides a means of populating the composition of a

repository entry with components and physical information. This
button is displayed to the left of the Composition/Attributes field.

When the Entry Type is a Class, or when the Classic User Interface
is turned off, the Add button displayed beneath the Attributes
Details button is active. You can use this button to add details.
When you begin typing in the field next to the Add button, the

Working with the Repository Functions

[Type here] [Type here] [Type here]

button is enabled. Click the Add button to add the attributes to the
Attributes field.

Editing Keys
Because the Edit menu is not accessible from the repository, you can use the right-click menu
that is available when an object (text) is highlighted and you click the right mouse button.
Using the right-click menu, you can Cut, Copy, Paste, or Delete the selected object.

Field Types
The data repository of a Visible Analyst project is displayed using Define dialog box
variations corresponding to different diagram objects. You see and work with some of these
variations during the course of this lesson. The basic dialog box, shown in Figure 17-1, is for
data elements, aliases, miscellaneous objects and external entities or source/sinks. Other
objects, such as data stores, processes, functions, entities, relationships, modules, data flows
information clusters, etc., have variations in individual fields and tabs of the Repository
dialog box to accommodate the specific needs of those items. Some of these differences are
seen later in the lesson.

Label Field
This is the name of the repository item. The names of items drawn on diagrams are
automatically entered here.

Entry Type Field
This tells Visible Analyst what kind of object the item is: process, data flow, entity, etc. The
entry type can be entered manually, or you can select the type from the scroll box accessed by
clicking the down arrow at the end of the entry type field.

Note

 You can edit the Entry Type and Label fields of data elements and data
structures that do not appear on diagrams. The entry type for a data element
cannot be changed if physical information for that element has been entered.

Description Field
The Description field is a two-line field that provides a convenient place to enter a somewhat
more extensive descriptive title of the object than the Label field allows. The contents of this
field are used for the Comment on Column (data elements) and Comment on Table (entities)
when SQL DDL is generated if the selected SQL dialect supports this syntax.

Working with the Repository Functions

 Page 30

Alias Field
The Alias field contains 10 lines of 128 characters each. It allows for the entry of alternative
labels to the one used as the object label. This is most commonly used for indicating the
cryptic abbreviations that are sometimes used in the actual coding of a software program, as
opposed to the plain English names that are desirable for reference. The Alias field is an
intelligent field. Data names entered into it establish new repository entries for these aliases.

Attributes Field
The purpose of the Attributes field is to accumulate the collection of data elements that you
wish to define as constituting a data flow, entity, data store, etc. The Attributes field is an
intelligent field. Data names entered into it establish new data element repository entries or
update existing ones. These new data elements can then be used for further definition. Data
flows, data structures and couples can also appear in some Attributes fields.

When you click the Attributes Details button, the Add Attributes dialog box appears. Using
this dialog box, you can define up to 12 components and some of their properties. As you
enter items, the dialog box automatically scrolls as necessary to allow you to enter more items
until you reach 12. When you complete the entries, click OK to add them to the Attributes
field. If you need to add more than 12 components, click the Attributes Details button again;
and a new dialog box opens so that you can add additional attributes.

Use the Add button at the bottom of the Attributes field to add components one at a time.
When you begin typing in the field next to it, the Add button becomes active. Complete your
entry, and then click Add to enter the component in the Attributes field.

Values & Meanings Field
The Values & Meanings field allows an unlimited number of lines. The maximum number of
characters that can be contained in the field is 64K. This field allows the entry of specific
information about the value(s) the item can take.

Discriminator Values & Meanings Field
If the current object is a data element that is used as a discriminator, this field contains a list
of values to identify the subtype entities. For each subtype, a value can be entered that will
uniquely identify it. By default, these values are numbers starting with 0 for the supertype.
To change the value, click the value until an edit control appears, make your changes, then
press ENTER.

Notes Field
The Notes field is also a field that allows you to enter any pertinent information about the
object. The maximum number of characters that can be contained in the field is 64K. This is
the logical field to use when creating hyperlinks to external documents, web pages or other
application files.

Working with the Repository Functions

[Type here] [Type here] [Type here]

Location Field
This field displays two types of usage information. The field can contain the diagram name
(and, for DFDs, the diagram number) of every diagram where the item appears. The field can
also tell you if the item appears as an attribute of another item. This second kind of location
entry has the entry type of the parent item, followed by an arrow and the name of the parent
item.

Other Pages and Fields
Other pages of the Define dialog box contain additional information. For example, pages 2
and 3 of the basic repository form provide location and relationship information and
specifications for PowerBuilder/VISION extended attributes. These two pages are similar for
most entry types. For some entry types, additional pages will be displayed:
• When the entry type is an entity, the next five pages contain keys, foreign keys, triggers,

check constraints, and physical information.
• For views, the next five pages provide table, column, join, clause, and option

information.
• When the entry type is a relationship, there are additional pages that contain foreign key

and cardinality information.
• When the entry type is a tablespace, an additional page contains property information.

A full list and complete descriptions of pages and fields can be found in the Operation
Manual and in the online help.

Object Repository
The Visible Analyst repository provides several additional forms and data input components
for supporting the object-oriented concepts. The object repository components are detailed
below.

Attributes
The Attributes field replaces the Values & Meanings field whenever the Repository dialog
box displays a class. The field contains a list of the data members for the class showing the
local data element and type. To add, change, or remove local data elements, click the
Attributes Details button or select Add/Change from the Repository Object menu. For each
attribute, the following information can be defined:
• Name. The name of the attribute. Each attribute of a class has a separate entry in the

repository with a type of local data element. This is an optional field. The search button
can be used to find other local data elements in the repository.

• Type. The attribute type can be a class, data element, or data structure. If the type does
not exist in the repository, a new class is created. The location field of the attribute type
contains a reference to the current class. This is a mandatory field. The Search button can
be used to display a list of valid types. If the attribute type is a data element or elemental

Working with the Repository Functions

 Page 32

class, its physical characteristics are displayed. Entries added to the Type field are saved
as data elements for an entity or data flow, and class/subtype element when the object is a
class.

• Limit. The number of occurrences of the attribute. If this field is blank, the attribute
occurs once.

• Reference. A qualifier to indicate the access method for an attribute. Value indicates the
object defined in the Type field is used; Address indicates a pointer to the object is to be
used; and Reference indicates a reference to the object is to be used. The default is Value.

• Visibility. Public members have global visibility. Private members are only accessible to
member functions and friends. Protected members are accessible to derived classes and
friends. Implementation members are only accessible to the class itself. The default is
Private.

• Qualification. Constant indicates a member‘s value cannot be changed. Volatile
indicates the member can be modified by something other than the program, either the
operating system or hardware. Static indicates there is only one instance of the member
regardless of the number of times a class is instantiated. The default is None.

• Physical Characteristics. If the attribute type is elemental, the physical characteristics
can be set.

For every item entered into the Type field, Visible Analyst creates a repository entry (if one
with the same name does not already exist) and updates that entry‘s location field. If an item
is removed, this field is updated to reflect this. These repository entries are generally created
as classes unless a data element already exists with the same name or the physical
characteristics are defined

As you enter items, the dialog box automatically scrolls as necessary to allow you to enter
more items until you have finished. Insert is used to insert a new attribute into the list at the
current position, while Delete removes the current attribute (the current position is indicated
by ). When you have completed the entries, click OK to add them to the Attributes field.

Item names entered into this field may contain up to 128 characters each and may consist of
any upper or lower case letters, numbers, spaces, periods, underscore characters and hyphens;
but the first character must always be a letter.

Attached Entities/Classes
The attached entities/classes for the currently displayed relationship are listed in this field.
When an inheritance relationship is displayed, the characteristics of that relationship can be
changed (see changing Inheritance Characteristics later in this chapter). Otherwise, the
information cannot be edited from within the repository; and all changes must be made on a
diagram. The field lists the two entities or classes attached to this relationship. Below the
second entity name is listed the reverse of the current relationship. If either direction of the
relationship has not been named, the name of the relationship in the reverse direction is

Working with the Repository Functions

[Type here] [Type here] [Type here]

displayed as ―reverse of (opposite relationship name).‖ This field allows you to jump to the
repository entries for any of these entities or relationships, as described above.

Relations
For an entity or class, the Relations field displays the relationship name followed by the name
of the entity or class on the other end of this relationship for each relationship attached to this
entry. These sets are ordered alphabetically by the opposite entry name. When an inheritance
relationship is displayed, the characteristics of that relationship can be changed (see Changing
Inheritance Characteristics later in this chapter); otherwise, the information cannot be edited
from within the repository; and all changes must be made on a diagram.

This field allows you to jump to the repository entries for any of these entities, classes, or
relationships by positioning the cursor on the line containing an entity, class, or relationship
name and clicking the Jump button.

Long Name
When a repository entry, either a local data element or a module, belongs to a class, the full
name of the entry includes the class name. The Long Name field displays this name and, in
the case of modules, includes the argument list (the argument list is required to differentiate
overloaded member functions). If you want to change the argument list for a class method,
click the right mouse button on the Long Name field and select Change (see the Methods
section later in this chapter for details). If you want to change the class to which the method
belongs, select Class from the Repository Object menu. To display the class definition, click
the Jump button.

Class Characteristics
Concurrency, displayed on the Methods/Friends tab, is a class property that distinguishes an
active object from inactive object. An active object may represent a separate thread of control.
A sequential object is a passive object whose semantics are guaranteed only in the presence of
a single thread of control. A guarded object is a passive object whose semantics are
guaranteed in the presence of multiple threads of control.

A persistent class exists beyond the lifetime of an executable program. This means it must be
stored on a non-transitory storage device. If the subtype of a class is set to either entity
(associative or attributive) and the class is used on an entity relationship diagram, this field
cannot be changed.

An abstract (or virtual) class cannot be instantiated because it contains pure virtual methods.
If pure virtual methods exist for a class, Abstract is checked. If you attempt to uncheck this
field, all pure virtual methods are reset to virtual. If you attempt to check it and virtual
methods exist, they are converted to pure virtual methods.

Working with the Repository Functions

 Page 34

Figure 17-3 Class Attributes

Methods
Methods (or Member Functions) are the operations that are defined for accessing a class. The
Methods field contains a list of the functions for a class showing the name, return value,
argument list, and flags to indicate its visibility. To add, change, or remove methods, click on
the Methods field and click the Attributes Details button or select Add/Change from the
Repository Object menu. To add a new method for a class, click the New button and type the
name of method you wish to add. To search for methods that have already been defined in the
repository, click the Search button. The list contains all modules that have previously been
defined in the repository. If the module already belongs to a class, the class name is displayed.
Note that when you select a module that already exists, the complete definition for that
module is used including return value and argument list. Click OK to add the method name to
the list of methods for the current class. For each method, the following information can be
defined:

Working with the Repository Functions

[Type here] [Type here] [Type here]

Figure 17-4 Class Methods

• Returns. The return type can be a class or data element. If the type does not exist in the
repository, a new class is created. The Location field of the attribute type contains a
reference to the method. This is an optional field. Click the Search button to display a list
of valid types.

• Limit. The number or size of the parameter. If this field is blank, it occurs once.
• By. A qualifier to indicate how the return value is passed. Value indicates a copy of the

parameter is passed; Address indicates a pointer to the object is to be used; and Reference
indicates a reference to an object is to be used.

• Visibility. Public methods have global visibility. Private methods are only accessible to
other member functions within the same class and friends. Protected methods are
accessible to derived classes and friends. Implementation methods are only accessible to
the class itself. The default is Public.

• Qualification. Static indicates a method can be used without a specific instance of an
object (it can only be used with static attributes (data members)). A Virtual method is one
that you expect to be redefined in a derived class. A Pure Virtual method has no
definition and must be defined in a derived class. A class with any pure virtual functions
is an abstract (or virtual) class. The default is None.

• Arguments. A list of parameters to be used by the method. This is an optional field. If a
method appears more than once with the same name within a class, it must have a
different argument list for each definition. This is known as function overloading. See the
next section for defining arguments.

Working with the Repository Functions

 Page 36

When a method is added to a class definition, an entry of type module is created in the
repository. The long name includes the class name and the argument list. The argument list is
needed to differentiate between overloaded functions.

Note

 Because the same name can be used for more than one method, there may be
duplicate module entries in the repository, each belonging to a different class.

Arguments for Methods
When defining methods (member functions) for a class, the parameters to the function need to
be specified. To add, change, or remove arguments, click the Arguments button on the
Method Definition dialog box. For each argument, the following can be defined:
• Name. The name of the parameter. This is an optional field.
• Type. The parameter type can be a class or data element. If the type does not exist in the

repository, a new class is created. This is a mandatory field. The Search button can be
used to display a list of valid types. If the parameter type is a data element or elemental
class, its physical characteristics are displayed.

• Limit. The number or size of the parameter. If this field is blank, it occurs once.
• Pass By. A qualifier to indicate the how the parameter is passed. Value indicates a copy

of the parameter is passed; Address indicates a pointer to the object is to be used; and
Reference indicates a reference to an object is to be used. The default is Value.

• Qualification. Constant indicates a parameter‘s value cannot be changed. Volatile
indicates the parameter can be modified by something other than the program, either the
operating system or hardware. The default is None.

• Physical Characteristics. If the parameter type is elemental, the physical characteristics
can be set.

For every item entered into the Type field, Visible Analyst creates a repository entry (if one
with the same name does not already exist). These repository entries are generally created as
classes unless a data element already exists with the same name or the physical characteristics
are defined.

As you enter items, the dialog box automatically scrolls as necessary to allow you to enter
more items until you have finished. INSERT is used to insert a new parameter into the list at
the current position, while the DELETE key removes the current parameter (the current
position is indicated by ). When you have completed the entries, click OK to update the
method name field. Item names entered into this field may contain up to 128 characters each
and may consist of any upper or lower case letters, numbers, spaces, periods, underscore
characters and hyphens; but the first character must always be a letter.

Working with the Repository Functions

[Type here] [Type here] [Type here]

Friends
The Friends field displays a list of both friend classes and methods (or functions). A friend is
allowed access to the private data members of a class. To add friends, click on the Friends
field and click the Search button, select Add from the Repository Object menu, or double-
click on the Friends field while pressing CTRL key. A list of classes and member functions is
displayed in the Search list box. Locate each repository item you want to place in the Friends
field and click the Search button; the item is added to the Select list box at the bottom. When
you have found all of the entries you want, click the Select button and they are entered into
the Friends field.

To remove a friend, highlight the desired item and press the DELETE key or select Cut or
Delete from the Repository Object menu.

Navigation Capabilities
In this section, you change the displayed repository entry using Next, Prior, and Jump.

Note

 The repository saves some internal settings for the duration of a Visible Analyst
session. If these are set incorrectly, they may interfere with the smooth flow of
this lesson. Therefore, we suggest that if you or another user worked in the
repository during the current session, you should exit to Windows and restart
Visible Analyst. In this way, you have a clean slate on which to run this lesson.

Open the Repository: 1 Access the repository using either Define from the
Repository menu or CTRL+D. A blank Define dialog
box is displayed.

Access an Entry: 2 Type ―Person Information‖ in the Label field and press
ENTER twice. (Pressing ENTER once brings up the
Search dialog box. Pressing it a second time displays the
entry found. If you press ENTER twice quickly, you get
the same result without displaying the search box.) The
repository entry for Person Information displays with all
of the information that has been entered into the
repository for this entry.

Move Around: 3 Click Next. The next entry in alphabetical order is
displayed.

 4 Click Prior. Person Information is again displayed.

Working with the Repository Functions

 Page 38

Jump to Other
Entries:

5 Click the element Name in the Attributes field. (It may
be necessary to scroll the contents of the field to bring
Name into view.) Click Jump. (Click Yes if you are asked
if you want to save Person Information.) The repository
entry for the data element Name is displayed.

 6 Move to page two by clicking the Physical Information
tab at the top of the dialog box. (The current page
number is displayed in the upper right corner of the
Define window.) This displays more information about
the current entry, including the Location information that
indicates where the current entry is used.

 7 Click the line in the Location field containing Person
Information. This highlights the line.

 8 Click Jump. The entry for Person Information is once
again displayed. The Locations tab (page 2) is currently
displayed. An alternative to selecting Jump to switch to
another repository entry is to double-click the entry name
in the Location field or to click the Back button.

 9 Move to page one by clicking the Description tab.

Search Capabilities
Searching for entries in the repository is an easy procedure. It can also be a very useful feature
because you can set the Search Criteria to display only certain entry types as you move from
one repository entry to the next. To search for an entry in the repository:

Access an Entry: 1 Click Clear. This clears the dialog box but does not
delete the entry.

 2 Type ―Road Test‖ and press ENTER twice. The
repository entry for Road Test is displayed with all of the
information that has been entered into the repository for
this entry. (This was done for you in the samples included
with the TEST project.)

 3 Click Clear.

Working with the Repository Functions

[Type here] [Type here] [Type here]

Search for the 4 Click the Search button to open the search box to select
Entry: from the repository. Type ―r‖ and entries that begin with
 ―r‖ appear in the list box. If you now type an ―o,‖ you see

that the repository searches incrementally as you type,
getting closer to the entry you want.

Figure 17-5 Repository Search Dialog Box

5 Click Road Test and then click Search. The repository
entry for Road Test is displayed.

Setting the Search Criteria
Search criteria set the scope of the entries that are displayed as you search through the
repository.

Clear the Dialog Box: 1 Click Clear to clear the dialog box.

Set the Criteria: 2 Click Search Criteria. You see a dialog box
entitled Set Search Criteria, as shown in Figure 17-6.

Working with the Repository Functions

 Page 40

Figure 17-6 Setting Repository Search Criteria

3 In the box entitled Searches Affected, select All. This is
the method used to limit the scope of the entries displayed
when navigating the repository using Next and Prior, as
well as the entries that are displayed when you select
Search.

4 In the box labeled Entry Characteristics, select All. This

tells Visible Analyst to search all items in the repository,
rather than only those entries that are Undefined or entries
that have No Locations. No Location entries are typically
those that have been entered directly into the repository
rather than added to the repository by being placed on a
diagram.

5 Click the down arrow on the right side of the field marked

Scope. This allows you to choose the diagram type to
which you wish to limit your search. Select Data Flow.

6 Click the down arrow on the right side of the field marked

Entry Type(s). This allows you to be very specific about
the type of entry to which you wish to limit your search.
You can choose individual types and some combination
types.

7 Select Data Flow, then click OK.

Working with the Repository Functions

[Type here] [Type here] [Type here]

Try Out the Criteria: 8 At the blank Define dialog box, click Search. Because
your search criteria limits searches to data flows, the list
displays only the entries in the repository of the type data
flow. Select Road-Test-Criteria and then click Search.

 9 Now click Next. The next entry displayed is the next data
flow in alphabetical order, rather than simply the next
entry in alphabetical order. If you click Next a few more
times, you notice that only data flow entries are displayed.

 10 Click Search Criteria again and set Scope back to Entire
Repository. Be sure that Entry Type(s) is set to All.
Click OK.

Using Search to Add Items to a Field
The Search feature can also be used to add repository entries to a field without retyping them.
This option is very useful for adding multiple data elements to an Attributes field. Instead of
typing the name into the field, you can select it using the Search function.

Clear the Dialog Box: 1 Click Clear.

Find an Entry: 2 Type ―V‖ in the Label field and click Search.
Valid-Applicant should be the first entry on the list. Click
on it and it appears in the Search For field. Click Search
and the repository entry for Valid-Applicant appears.

Select Attributes: 3 Click on the Attributes field.

 4 Click the Search button. The available data elements are
displayed. Double-click on Address, Birth Date, Name,
and Social Security Number. All the selected elements
are displayed at the bottom of the Search dialog box as
shown in Figure 17-7.

Working with the Repository Functions

 Page 42

Figure 17-7 Add Information with Search

Add Attributes 5 Click Select. All the selected elements are added to the
and Save: Attributes field. Click Save and then click Exit.

ADVANCED REPOSITORY FEATURES

Adding Information to the Repository
In this unit, you add attribute information to an entity; the attributes consist of the data
elements that make up the entity. You also add the primary key information, so that you can
demonstrate Key Analysis and Key Synchronization to migrate foreign keys across
relationships automatically. All of the key information relates to the method for accessing
tables in a database. We assume that each entity corresponds to one table.

Open a Diagram: 1 Open the entity relationship diagram ―Driving School

View‖.

Working with the Repository Functions

[Type here] [Type here] [Type here]

Display a Repository
Entry:

2

3

Click the  button on the control bar.

With the left mouse button, double-click the entity
 Student Driver. Its repository entry is displayed.

Enter Attribute Data: 4 Place the text entry cursor in the field immediately to the
right of the Add button under the Attributes field. Type
―Student Name‖ and click Add. Add ―Home Address‖
and ―Age‖ in the same manner. Since the data elements
you just added to the Attributes field are not already in the
repository, entries for each are automatically added when
you click Save.

Save the Entries: 5 Click Save to save the attributes you entered.

Enter Key Information: 6 Click the key button to display the Primary Key dialog
box. Select Student Name to move it from the Columns
in Table box to Columns in Key box. Click OK to return
to the Define dialog box.

 The key notation by Student Name indicates that Student
Name is the primary key for this entity.

Working with the Repository Functions

 Page 44

Figure 17-8 Student Driver Attribute Information

Clear the Dialog Box: 7 Click Clear. This clears the repository dialog box but
does not delete the entry from the repository.

Access Another Entry: 8 Type ―Driving School‖ in the Label field and press
ENTER.

Working with the Repository Functions

[Type here] [Type here] [Type here]

Add Composition: 9 Click the Attributes Details button and type ―Driving
School Number‖ and ―Driving School Name,‖ each on a
separate line. Click OK.

Create Primary Key: 10 Click the Key button next to the Attributes field to display
the Primary Key dialog box.

 12 Click Driving School Number in the Columns in Table
box to move it to the Columns in Key box. Click OK to
return to the Define dialog box.

Save: 12 Click Save to save your changes, then click Clear.

Access Another Entry: 13 Type ―Driving Lessons‖ in the Label field and press
ENTER.

Add Attributes: 14 Click the Attributes Details button, place the cursor in the
Type field, and then click Search.

 16 Scroll the search box until Driving School Number
appears. Click Driving School Number and then click
Search to enter it on the Attributes dialog box. Move the
cursor to Type field of the next line. Add Student Name in
the same manner.

 17 Move the cursor to the Type field of the next line, and
type ―Lesson Number.‖ Click the cursor in the Limit
field to enable the Physical Characteristics pane at the
bottom of the dialog box. Select Integer as the Data
Type.

 18 Click OK to add the attributes to the Define dialog box.

Create Primary Key: 19 Click the Key button next to the Attributes field to
display the Primary Key dialog box. Click Lesson
Number in the Columns in Table box to move it to the
Columns in Key box. Click OK to return to the Define
dialog box.

Save and Exit: 20 Click Save and then click Exit.

Working with the Repository Functions

 Page 46

Key Analysis and Key Synchronization
The Key Analysis and Key Synchronization functions, found on the Repository menu, can
help you set up a consistent relational database key structure. There are three types of keys
used in a data model: primary, foreign, and alternate keys. All keys are designated in the
Attributes field of an entity in the project repository. A primary key is one or more attributes
or data elements that uniquely identify an entity. To designate a data element as a primary
key, the yellow key notation is used in the Define dialog box. On the diagram, primary keys
are displayed in the area immediately under the entity name when the primary key level is
selected from the control bar or the View/Entity Display Options menu. A foreign key is a
non-key attribute in one relation that appears as the primary key (or part of a compound
primary key) in another relation. The gray key notation in the Attributes field of an entity
designates a foreign key. The FK notation is shown when the entity on the diagram is
displayed at the attribute view level.

Key Analysis verifies that the key structure for your data model is complete, checking that all
key information is correctly identified for the data model. Key Synchronization analyzes the
key structure and migrates data elements that you designate as keys, or parts of compound
keys, across relationships to their associated entities, and creates the resulting foreign keys.
Using associator element names in relationship repository entries makes this process work
better. (Please check the Visible Analyst manual or online help system for an explanation of
associator elements.)

Key Analysis and Key Synchronization both involve analyzing the primary key [PK] and
foreign key [FK] designations in the TEST project repository. A primary key is an attribute or
data element that uniquely identifies a record.

Run Key Analysis: 1 Select Key Analysis from the Repository menu. Visible
Analyst scans the entire repository and indicates any
errors it finds.

Working with the Repository Functions

[Type here] [Type here] [Type here]

Figure 17-9 Key Analysis Error Messages

View the Errors: 2 Click the Maximize button in the upper right corner of
 the errors dialog box. Scroll through the messages. You

see that there are error messages indicating missing
foreign keys for the entities on the current diagram.

Note
 You can keep analysis error dialog boxes on the screen while you carry on

various Visible Analyst activities. This is to make it easier for you to correct the
errors found by Analyze. The same holds true for SQL Schema Generation,
Shell Code Generation, etc.

.

3 Click Cancel.

4 Select Key Synchronization from the Repository menu.
Visible Analyst first analyzes for key errors and then
migrates the foreign keys across relationships.

5 Maximize the Key Synchronization Messages dialog box.

Key Analysis messages appear first, followed by Key
Synchronization messages. You should notice the Key
Synchronization messages, indicating the foreign keys
that have been migrated.

Working with the Repository Functions

 Page 48

Figure 17-10 Key Synchronization Messages

 6 Click Cancel.

Examine the
Migrated Key:

7 Double-click Student Driver. Notice the foreign key
Driving School Number that has been added. This was
done by Key Synchronization. It saves you from
migrating all of the foreign keys manually.

 Note also that Analyze added text describing the key. All
text following an asterisk is considered a comment and is
ignored by the repository. (When the object interface is
enabled, comments are not displayed.)

Working with the Repository Functions

[Type here] [Type here] [Type here]

Figure 17-11 New Foreign Key Information

8 Click Exit.

9 Deselect Student Driver on the diagram.

View Objects
Visible Analyst Corporate and Zachman Editions support the concept of an SQL view, which
can be thought of as a derived or virtual entity. A view is similar to an entity in that it has a

Working with the Repository Functions

 Page 50

composition, but the items that appear in the composition of a view must belong to other
entities or be expressions based on data elements used by another entity.

An SQL view is made up of two major components: a list of column names and a select
statement that is used to filter information from the tables in the view. The select statement
can contain not only the primary select clause, but also any number of sub-selects and union
selects. When view is selected as the entry type, view-specific Define dialog box pages are
displayed. Using these pages, you can select tables, columns, join relationships, clauses, and
other options for the view. An expression builder is available to help you create the
expressions to be used in the filter, group by, having, start with, connect by, or join expression
controls.

Detailed information about views can be found in the Operation Manual and in the online
help system.

Note

 Views are not available in the Education Editions of Visible Analyst.

Generate Database Schema
The Corporate and Zachman Editions of Visible Analyst generates SQL DDL (Structured
Query Language – Data Definition Language) schema from the information contained in the
repository. In the Corporate and Zachman Editions, you can select from several different
dialects of SQL, including a User Defined type, to allow the use of a dialect not currently
supported by Visible Analyst. For more information on the custom feature, see the Operation
Manual or the online help system. The statements that are supported include CREATE
TABLE, CREATE INDEX, and COMMENT ON. More information is contained in the
Operation Manual or in the online help system.

The Education Editions of Visible Analyst allow you to generate SQL for Microsoft Access
and Oracle only. To generate SQL:

Choose Access Dialect: 1 Choose SQL Dialect from the Options menu, then
choose Access.

Generate SQL Schema: 2 Select Generate Database Schema from the
Repository menu to generate the schema. When the
dialog box appears, click OK. (Refer to the Operation
Manual or online help system for details of the SQL
Schema Generation dialog box.) If errors are found, they
along with the generated schema will be displayed.

View the Schema: 3 Maximize the SQL generation dialog box.

Working with the Repository Functions

[Type here] [Type here] [Type here]

4 Click the Schema button to display the generated schema.
See Figure 17-12. If Visible Analyst does not have the
information to generate the schema, a list of errors is
displayed; but no Select box is present. Click the Errors
button to view any errors. (If too many errors are
generated, the Schema button is not displayed.)

Figure 17-12 Generated SQL Schema

Shell Code Generation
The Corporate and Zachman Editions can generate C and COBOL shell code. The code that is
generated encompasses the sequence of functions or paragraphs that make up a program,
including global definitions, descriptive comments, function call/PERFORM statements, and
passed parameters. Information entered in text fields in the repository entry for a program
item or a structure chart module produces comments that describe these items within the
generated code. Also, actual source code can be entered in the module description field of a
module or macro, and this code is placed in-line with the function calls or PERFORM
statements that are generated by invocations. Couples or ITRs used with invocation lines
generate parameters for C code. There is also an option to customize the code to be

Working with the Repository Functions

 Page 52

generated. (See the online help for other generation options supported by Visible Analyst,
such as AS/400 DDS, Visual Basic, PowerBuilder, etc.)

XML Generation
Visible Analyst can generate the XML Schema based on the W3C standard by selecting the
Tools | Export | XML Schema (XSD) menu option. The XML file is generated for the entities
and (optionally) classes developed in the project. The XML file is written to the Visible
Analyst TRANS folder.

XML DCD code can also be generated based on the data models. This is similar to SQL
schema generation. XML can be selected as the generation option when you select SQL
Dialect from the Options menu. The procedure is similar to the SQL DDL generation. See
the Operation Manual or the online help for more information.

Repository Reports
Now you practice generating a report on the data contained in the repository. This is a basic
report containing a detailed listing of all entries contained in the repository. For detailed
information about Reports and Report Queries (Custom Reports), see the Operation Manual
or the online help system.

First set the font for the report you want to generate.

Set the Report Font: 1 From the Options menu select Text Settings.

 2 Under Text Type, select Report Body.

 3 Select a typeface and point size, and click OK.

Set the Report Criteria: 4 Select Reports from the Repository menu. The
Repository Reports dialog box appears (see Figure
17-13).

Working with the Repository Functions

[Type here] [Type here] [Type here]

Figure 17-13 Repository Reports Dialog Box

 5 Under Project Scope, select Entire Repository.

6 Under Report Type, select Detailed Listing.

7 Under Included Types, select All.

8 Under Report Scope, Entire Project is selected.

9 In the box labeled Sort Sequence, select Alphabetical.
This determines the entry order in your report printout.

10 In the box labeled Entry Characteristics, select All
Entries.

11 In the box entitled Entries Per Page, select Multiple
Entries Per Page. You can select Single Entry Per Page to
reorder the pages of your report once they have been
printed.

Run the Report: 12 Click Print; the information is sent to the printer. Select
Preview to view the report first.

Working with the Repository Functions

 Page 54

Note
 Reports can be generated in HTML format so that they may be viewed in a

browser. When you select Preview, the Use Browser for Preview Option is
enabled. If you select this option and you have a browser on your PC, the report
is generated and displayed in your browser.

13 Click Cancel when printing is complete to exit the

Repository Reports dialog box.

Where To Go From Here

[Type here] [Type here] [Type here]

Where To Go From Here

OVERVIEW
This concludes the Visible Analyst tutorial. To exit the program, select Exit from the File
menu.

You have now completed exercises in many of the major elements of planning, structured
analysis and design, data modeling and object modeling:
• Drawing diagrams to model a system.
• Using methodology rules to insure against inconsistencies.
• Adding written definition to the graphic model.
• Embellishing the model following the initial layout.
• Expanding the model through definition of repository elements.
• Generating reports.

All structured software and systems engineering involve these same basic operations.

REAL WORLD APPLICATION
The example project that you created was a simple one. The real power of MDA is in the
application to systems too complex to keep in your head at one time, too large to be reviewed
by inspection, too widespread to have only one person working on the whole job. These types
of projects include nearly every system designed today. That power shows itself in four areas:
• The assurance of accuracy and completeness, that no elements are left dangling or

unaccounted for.
• The prompting and reminders that error checks and repository output provide, to focus

attention in the midst of a dauntingly complex assignment.
• The word processing-like ease with which changes and modifications can be

accomplished, while ripple effects are flagged and accounted for.
• The convenience of thorough documentation that is produced concurrently with the

design, not as a drudgery-filled after-effort.

Where To Go From Here

 Page 56

The power of MDA further multiplies into substantial gains in productivity, communication
and quality when applied to team effort. The Corporate and Zachman Editions of Visible
Analyst have significant capabilities for exporting and importing information, either through
portable media or through participation in a local area network. This allows Visible Analyst to
become an integral part of any development environment, sharing information and expanding
the value of labor. Many groups thus can benefit from another group‘s hard work.

Finally, the application of the power of MDA productivity enhancement is not limited to
software but can be applied toward analyzing and designing any system, such as:

Manufacturing Medical Diagnostic Analysis
Planning Command and Control Operations
Processing Administrative Procedures
Legal/Judicial Inventory Control
Audits

Visible Analyst is designed to be a natural extension of the way you think, create, and
analyze. Our goal is to ―Put MDA Within Everybody‘s Reach‖ and to make MDA tools and
the methodologies of structured analysis, design, data modeling and object modeling a
natural, seamless, integrated part of your everyday work, rather than an arcane ritual to be
occasionally endured by specialists. The integration and flexibility to use the components and
elements that you deem necessary for your application provide you with a customizable tool
set that can be adapted to support how you choose to work on the design and development of
information systems.

WHAT TO DO NEXT?
There are still many things for you to do to become comfortable and committed to the use of a
MDA tool. We suggest the following:
• Study and review the logic concepts introduced in the tutorial (consider reviewing the

referenced materials).
• Review the tutorial steps and practice any areas that were unclear.
• Select a personal real-world project to do using Visible Analyst. Make it a modest-sized

effort to give you some time to explore and experiment with the tool.
• Select the parts and components that you want to use in your software development

practice.
• Practice, practice, practice. Make adjustments where needed.
• Make the tool a regular part of all of your projects.
• Define standards and procedures for library components.
• Build disciplines and skills with concepts and Visible Analyst.
• Use technical support as needed - don‘t get stuck, don‘t become frustrated.

Where To Go From Here

[Type here] [Type here] [Type here]

• Stop and evaluate what you have done, show others, review the work of others - find
ways to improve the content and the processes.

• Practice reusability wherever possible.
• Stay up to date with the tool and the evolving methodologies.
• Build a library of materials for use in future projects.

CONCLUSION
We hope that these lessons have helped to make you feel comfortable with the planning,
structured systems analysis and design, and data modeling tools, and their implementations in
our product.

For more information or if you have any questions about MDA or structured analysis, please
contact the Visible Systems technical support staff:

Telephone (617) 902-0767
FAX (508) 302-2400
https://www.visiblesystemscorp.com

https://www.visiblesystemscorp.com/

Where To Go From Here

 Page 58

Where To Go From Here

[Type here] [Type here] [Type here]

Index

 button, 72, 73, 83, 85, 88, 90

,

, library modules, 128
, return value, 223

:

: procedure call, 185

A
a list of functions for a class, 223
a list of valid types, 149
abstract class, 224
Abstract class, 222
access diagrams, 12
access method, 221
access method for an attribute, 145
access projects, 12
Accesses repository, 10
action, 154
action verb, 58
action verbs, 56
actions, 4
activation, 177
activation bar, 185
activation symbol, 180
active object, 222
active state verbs, 56
activity, 158, 197
activity diagram, 158
activity states, 160
actor, 168
actor communicates with use case, 170
actors‘, 168
add a file, 116
add a new method for a class, 223
add activation symbol, 181
add actor, 173

add actors, 173
add arguments, 149, 225
add communicates relationship, 174
add includes relationship, 174
add message, 194
add method, 194
add methods, 223
add object deletion, 183
add object links, 194
add objects, 193
add procedure call, 185
add procedure calls, 184
add relationships to a use case diagram, 174
add return, 187
add symbol button, 139
add symbols, 82
add system boundaries, 173
add system boundary, 173
add text, 187
add text button, 187
add use case, 174
add use cases, 173
adding a line, 71
adding a start, 161, 206
adding a synchronization bar, 161
adding activities, 162
adding attributes to a class diagram, 146
adding caption text, 73
adding classes, 139
adding classes to a view, 139
adding composition, 230
adding connection lines, 85
adding decisions, 162
adding entities to a view, 96
adding items to a field using search, 230
adding labels, 164
adding lines to a diagram, 132
adding methods, 150
adding new flows, 118
adding relationship lines, 99
adding relationships to a collaboration

diagram, 194
adding relationships to a state model, 156
adding relationships to a view, 140
adding states to a view, 155

Index

 Page 60

adding stopping, 163
adding swimlanes, 164
adding symbols, 67
adding transitions, 163
Address, 145, 148, 149, 221, 224, 225
advanced repository features, 231
aggregation, 137
aggregations, 4, 60, 138, 140
Alias field, 214, 219
aliases, 218
Align selected symbols, 10
align symbols, 83
alternate key, 235
alternate name for the use case, 172
alternative labels, 219
analysis, 1
analysis error dialog boxes, 88
Analysis error dialog boxes, 123
Analyze, 10, 59, 80, 87, 88, 89, 101, 112, 119,

122, 123, 152
analyze for key errors, 236
analyze information process, 3
analyze process, 3
analyzing a class diagram, 152
analyzing a diagram, 101
analyzing an FDD, 88
analyzing for balance, 122
analyzing for completeness, 122
annotation, 205
Apply button, 69
argument list, 223, 225
arguments, 149, 225
Arguments, 148, 224
Arguments button, 149, 225
arrow, 58
Arrow, 96
arrow originating at the object lifeline and

looping around to end at the same lifeline,
177, 202

arrow with a filled circle, 135
arrowhead terminator, 130
arrows, 60
artifacts, 204
ASCII file, 214
as-is operations, 3
assembly, 129
assigning user access, 14
association, 137

association flow, 203
Associative, 138
associative entity, 94
associator elements, 235
assurance of accuracy, 244
assurance of completeness, 244
asterisk, 237
asynchronous message, 177
asynchronous stimulus, 185, 191
attach flows, 114
attach lines, 114
attached classes field, 221
attached entities field, 221
attaching data flows to symbols, 118
attribute type, 145, 220
attributes, 60, 137, 176
Attributes, 137
Attributes Details, 217
attributes field, 219
Attributes field, 220
attributes of an object, 145
Attributive, 138
attributive entity, 94
Attributive Entity, 98
Auto Connect, 115
auto label lines, 194
Auto Label Lines, 71
Auto Label Symbols, 67, 68
automatic labeling of lines, 13
automatic labeling of symbols, 13

B

Bachman, 96
Back button, 217
Backup, 13
balancing a data model against a process

model, 59
basic attributes, 60
basic MDA models, 3
basic problem statement, 107
behavior, 138, 176
bi-directional relationship, 57
black bar, 158
blank context diagram, 92
block the symbols, 83
Boilerplate, 66
Boilerplates, 116

Where To Go From Here

[Type here] [Type here] [Type here]

Boldness, 69
bounding box, 70
BPEL4WS, 196
BPMN, 196
build information systems, 1
building relationships', 156
business functions, 3, 4, 79
Business Model, 4
Business Process Modeling, 196
business rules, 58
Business rules, 18, 42, 45, 46
business scenario description, 172
By, 148, 224

C

C, 240
C type components, 138
calling flows, 127
calling sequences, 127
caption text, 11, 116
caption text adding mode, 11
capture the behavior of a single use case, 176
cardinality, 56, 137, 140
Cardinality, 143
cardinality notations, 96
cardinality of classes, 138
Cascade, 14
change argument list of method, 192
change arguments, 149, 225
change arrangement of open diagrams, 14
change caption characteristics, 73
change cardinality of relationship, 101
Change Color, 76
change data flow lines, 115
change default settings, 13
change entity type, 98
change from one state to another, 154
Change Item, 98, 101, 135
Change Item dialog box, 98
change items displayed, 13
change methods, 223
change of condition, 154
change terminator, 133
change the appearance of active diagram, 13
Change Type, 98
change zoom level, 13
changing a symbol type, 97

changing caption characteristics, 73
changing conditions, 61
changing states, 61
changing text characteristics, 76
child, 81
child diagram, 111, 112, 117, 118
child diagrams, 107
choose rule set, 5
class, 138, 149, 176, 192, 224
Class, 145, 220, 225
class characteristics field, 222
class diagrams, 137
class hierarchies, 5
class inheritance, 94
class level, 190
class model, 1
class name, 225
class type, 137
classes, 4, 60
Classic User Interface, 217
classify kinds of users, 172
clause information, 220
clauses, 95
CLDs, 137
Clear, 10
clear dialog box, 227
clear display, 216
clear the dialog box, 228
click and drag, 9, 12
click and drag object, 12
Close, 77
close a diagram, 112
Close Diagram, 112
closing a diagram, 77
cluster, 94
cluster diagrams, 63
cluster view, 95
COBOL, 240
code generation, 1, 127
collaboration diagram, 190
collaboration diagram analysis questions, 191
collaboration diagrams, 190
collapse folder, 12
collection of program statements, 60
colors, 75
Colors, 13
column information, 220
columns, 95

Index

 Page 62

COMMENT ON statement, 239
comment text, 237
comments, 62, 240
communicates relationship, 170
compilation, 129
completion of the actions, 158
components, 1
components of a class modeling process, 137
components of state transition modeling, 154
Composition field, 214, 230, 235
computer program, 128
concatenated entity, 94
Concurrency, 222
condition, 177
condition an object can be at rest in, 154
conditional behavior, 158
conditional flow, 201
conditional invocation relationship, 133
conditional procedure call, 185
conditional terminator, 133
conditions, 177
configuration features, 7
Connect, 10, 86
connecting symbols, 86
Connection errors, 152
connection lines, 86
connectors, 81
consider benefit, 172
consistency check, 3
Constant, 145, 149, 221, 225
context diagram, 92, 107, 112
contract button, 216
contract display size, 216
control architectures, 127
control bar, 10, 11
Control Bar, 13
control connection, 130
control couple, 130, 135
control couples, 60, 130
control flags, 60
Control menu, 8
Control menu button, 112
control relationship between activation and its

callers, 177
control relationship between the activation and

its callers, 177, 180
copy, 7
Copy, 10, 13

copy of parameter is passed, 225
copy of parameter is passed, 149, 224
copy of the parameter is passed, 148
Copy Project, 13
copy text to a DOS file, 217
Correct Cardinality, 101
correlation table, 94
couple, 130
couple adding mode, 11
couple cursor, 11
couple-adding cursor, 134
couples, 11
Couples, 240
Create a new diagram, 82
create a use case diagram, 173
create a view, 59
create additional views, 139
create diagrams, 12
CREATE INDEX statement, 239
create models, 3
Create new diagram, 10
Create New Diagram, 117
create new sequence diagram, 179
create projects, 12
create repository entries, 80
CREATE TABLE statement, 239
create the process view, 103
creating a child diagram, 108
creating a diagram, 66
creating a new diagram, 96, 116, 139
creating a new project, 63
creating a top-level diagram, 112
creating an FDD, 82
Crowsfoot, 65, 96
CTRL+A, 10
CTRL+C, 10
CTRL+D, 10
CTRL+E, 10
CTRL+F, 10
CTRL+L, 10
CTRL+N, 10
CTRL+O, 10
CTRL+P, 10
CTRL+Q, 10
CTRL+R, 10
CTRL+S, 10
CTRL+T, 10
CTRL+U, 10

Where To Go From Here

[Type here] [Type here] [Type here]

CTRL+V, 10
CTRL+X, 10
CTRL+Y, 10
CTRL+Z, 10
Current Diagram, 101
current object, 9, 12, 68
current project, 12, 78
current zoom level, 12
custom repository report, 10
cut, 7
Cut, 10, 13, 70, 89
cutting a symbol, 70

D

dangling data flow, 122
dashed arrow, 187
dashed line, 177
dashed line with an arrow, 170
dashed vertical line, 176, 179
data and control are passed between modules,

130
data attributes, 4
data characteristics, 60
data connection, 130
data couple, 135
Data Couple, 134
data couples, 130
Data couples, 60
Data Definition Language, 239
data element, 109, 149
Data Element, 145, 220, 225
data elements, 62, 218
data entities, 3
data flow, 110
Data flow balance, 122
data flow diagram, 56, 61, 103, 107, 128
Data Flow Diagram, 4
data flow diagram objects, 108
data flow diagramming symbols, 111
data flow diagrams, 63
data flow line, 110, 115
data flow model, 1
data flow name, 111
data flow splits, 122
data flows, 58, 218
Data members, 137
data model, 1, 61

Data Model, 4
data modeling, 56
data object, 204
data only module, 129
data parameters passed between program

modules, 130
data store, 58, 109
data stores, 58, 218
Data Structure, 145, 220
data transformations of the system, 61
data ture, 176
database, 58
database keys, 62
decision, 158
Decision, 133
decision diamond, 162
decision end, 158
decision logic, 127
decision start, 158
decompose, 107
decompose a process, 112
decomposed processes, 90
decomposing a diagram, 125
decomposing a process, 108, 111
decomposing data flows, 120
Decomposition, 82
decomposition hierarchy, 108
default cardinality, 65
default colors, 76
Define, 10, 13, 226
Define dialog box, 12
define information systems, 1
define models, 3
define proposed changes, 1
defining attributes, 146
Definition errors, 152
definition of object classes, 137
DEL, 10
Delete, 13, 89
delete arguments, 149, 225
Delete button, 216
delete current parameter, 225
delete current repository entry, 216
delete line, 89
Delete Project, 13
delete the current attribute, 145, 221
derivation tree of the target, 192
derived class, 143

Index

 Page 64

derived classes, 148, 224
derived table, 95
Description, 64
Description field, 218
description of the use case, 172
deselect symbol, 71
deselect symbols, 83
Deselecting Objects, 9
design, 1
design information systems, 1
designating a starting point, 160
desktop colors, 7
Detail field, 143
develop changes, 3
DFD, 58, 81, 107
DFDs, 59, 63, 79
Diagram, 13
diagram Control menu button, 8
diagram created by information, 66
diagram creation date, 66
diagram heading, 66
diagram label, 68
diagram list, 12
Diagram menu, 13
Diagram Type, 66, 112
diagramming tools, 5, 63
diamond, 158
Discriminator Values & Meanings Field, 219
display context sensitive help, 217
display errors, 122
display next sequential repository entry, 216
display previous sequential repository entry,

216
displaying symbol labels, 76
document information systems, 1
double colon, 192
double-click, 9
dragged-down flows, 113
draw a top-level diagram, 107
draw data couple, 135
draw line terminator, 133
Draw lines, 10
drawing a class object, 140
drawing a data connection, 134
drawing a line, 71
drawing a process, 111
drawing a structure chart, 131
drawing couples, 134

Drawing Mode buttons, 11
duration of the action in time, 177, 180
dynamic model, 61
dynamic states, 5
dynamic view, 156

E

ease of change, 244
Edit menu, 10, 13
EDITING A DIAGRAM, 67
editing function shortcuts, 71
editing mode, 11, 73
elbow line, 99
Elemental class, 138
ending point, 159
enforce referential integrity, 57
ensure agreement, 108
ensure understanding, 108
Enter Subflows box, 121
entities, 218
entity, 56, 93
Entity, 138
Entity Attribute, 13
entity model, 62
entity relationship diagram, 56, 93
entity relationship diagrams, 63
Entity Relationship Model, 4
entity relationship modeling, 56
entity type, 93, 94
Entries Per Page, 242
Entry Characteristics, 242
Entry Characteristics box, 229
entry order, 242
Entry Type field, 218
erase button, 234
Erase button, 216, 227, 228, 230, 233
Erase partially drawn line, 10
ERD, 56, 93
ERD Notation, 65
ERDs, 59, 63
error checks, 244
error message, 88, 101
error messages, 60, 236
errors dialog box, 236
evaluate current information activities, 1
event, 93, 163, 197
event triggers, 154

Where To Go From Here

[Type here] [Type here] [Type here]

events, 4
events that change state value, 156
exceptions flow, 202
existing activation, 181
Exit, 12, 244
Exit button, 216
exit the repository, 216
expand button, 216
expand display size, 216
expand folder, 12
Explode, 112, 113, 117
exploding, 112
Export, 13
exporting the repository, 214
extended attributes, 220
extends relationship, 170
external entities, 58, 107, 218
external entity, 58, 110

F

F1, 2, 217
fast track users, 2
FDD, 79
field types, 218
File button, 217
File menu, 8, 12
filled circle, 159
filled circle inside a hollow circle, 159
filled solid arrow, 191
Find, 10
finding an entry, 230
fixing errors, 123
FK, 235
flag information, 220
flags, 95, 223
flat flow of control, 185, 191
flow chart, 107
flow of events, 168, 172
fonts, 7
foreign key, 235
foreign key notation, 235
friends, 148, 224
Friends field, 226
from, 192
function, 55, 60, 81
function calls, 240
function checks, 122

function model, 1
function overloading, 224
function parameters, 225
function symbol, 82
functional decomposition diagram, 80, 90, 124
functional decomposition diagrams, 79
Functional Decomposition Model, 4
functional decomposition modeling, 56
functional models, 5
functions, 218
fundamental entity, 93, 96
future line, 133

G

Gane & Sarson, 58, 65, 80, 109, 110, 111, 122
gateway, 198

complex gateway, 200
exclusive decision, 199
Inclusive Gateway, 199

generalize relationship, 170
generate a global view, 102
generate a new view, 103
generate application shell code, 2
generate application software code, 1
generate code, 7
generate database schema, 2, 62
generate new data model views, 102
generate reports, 7
generate schema, 1
generate shell code, 62
generate SQL code, 2
generate test cases, 2
generate test plans, 2
generate test scenarios, 2
generate test sequences, 2
generating a process decomposition model,

124
generating a view, 102
generating DFDs from an FDD, 90
generating SQL, 239
generic couple, 130
generic couples, 130
gerund, 94
Global, 98
global definitions, 240
global view, 93
global visibility, 145, 148, 224

Index

 Page 66

Grid, 13, 82
group of objects with the same data structure,

138
guard condition, 185, 193, 194
guarded object, 222
guarded outgoing transactions, 158

H

half-stick arrowhead, 191
hardware configurations, 7
Help, 10
help bar, 12, 68
Help Bar, 13
Help button, 217
Help menu, 2, 14
Help mode, 10
hidden interfaces, 129
Hide labels, 76
hiding symbol labels, 76
hierarchical diagram, 59
hierarchical structure, 4
hierarchical structures, 62
high-level planning, 79
History button, 217
History dialog box, 217
horizontal dimension, 176
horizontal solid arrow, 177
how a parameter is passed, 149
how groups of objects interact, 176
how parameter is passed, 225
how return value is passed, 148, 224

I

identify existing system processes, 55
identify specific business function, 55
Implementation, 145, 148, 221, 224
implementation of an operation, 138
Import, 13
Included Types, 242
includes relationship, 170
incoming transition, 158
Individual, 98
information about the way modules function,

130
information cluster, 129
information clusters, 218

inheritance, 4, 137, 138, 140, 143, 221
Inheritance, 138
initiate a search, 216
input, 60
input data flow, 110
input data flow not shown attached, 122
input data flows, 115, 118
input flows, 113
input transitions, 158
inputs, 4
insert a new attribute, 145, 221
insert a new parameter, 225
insert text from a DOS file, 217
instance, 138
instance level, 190
instance of a class, 176
integrated repository, 1
interaction diagram, 176
interaction diagrams, 190
interface table row, 130
internal data, 60
internal flows, 115
interrelationships of modules, 60
intersection, 94
invert a couple, 135
Invert Couple box, 135
invert elbow, 99
invocation line, 130
invocation lines, 240
invocation sequences, 127
invoked by name, 129
invoked module, 130
invoking module, 130
ioutput data flows, 115
iterative set of invocations, 131
ITR, 130
ITRs, 240

J

join information, 220
join relationships, 95
jump button, 217
Jump button, 227
junction, 94

Where To Go From Here

[Type here] [Type here] [Type here]

K
Key Analysis, 13, 231, 235
Key Analysis messages, 236
key operational characteristics, 5
key structure, 235
Key Synchronization, 13, 231, 235, 236, 237
key synchronization messages, 237
Key Synchronization messages, 236
Key Synchronization Messages dialog box,

236
keyboard editing commands, 218
keys to using Visible Analyst, 5

L

label diagram, 68
Label field, 218
label line, 72
Label Message dialog box, 185, 192
label relationship, 99
label symbol, 68
label system boundary, 173
label use case, 174
labels, 3
LAN version of Visible Analyst, 63
left mouse button, 9
level 1 DFD, 92
level of detail, 112
library macro, 129
library macros, 128
library model, 62
Library Model, 4
library module, 129
lifeline, 176
lifelines, 176
lifetime, 179
limit, 137
Limit, 145, 148, 149, 221, 224, 225
limit the scope of the entries, 229
line adding mode, 11
line between two entities, 94
line cursor, 11
line drawing mode, 10
line entry mode, 133
line handles, 72, 89, 118
line mode, 115
line segments, 89

Line Settings, 13, 115, 132, 133, 134
Line Settings., 73
Line Type, 73, 134
line with a filled circle, 130
line with a filled in circle, 130
line with an open circle, 130
line with no circle, 130
line-adding mode, 118
line-drawing mode, 71
lines, 11
Lines, 10, 13
list, 143
list of parameters, 224
list of all entries in the repository, 241
list of all objects in the repository, 12
list of classes, 226
list of column names, 95, 239
list of data members, 220
list of friend classes, 226
list of friend methods, 226
list of member functions, 226
list of methods for the current class, 223
list of parameters, 148
list of valid types, 145, 224, 225
list of values to identify subtype entities, 219
Local change, 98
Local Data Element, 145, 222
Local Data Elements, 145
location field, 145, 220
Location field, 224, 227
logical expression, 193
logical file, 58
long name, 149, 225
Long Name field, 222
Loop, 134
loop line, 131, 134
looping, 127
Lorensen, 137

M

macro, 129
macros, 128
maintaining consistency, 59
mandatory relationships, 57
materials flow, 107
Maximize button, 82, 116, 236
maximize diagrams, 7

Index

 Page 68

maximize the window, 116
Maximize the workspace, 131
MDA concepts, 3
MDA rules, 3
MDI, 7, 8
mechanics, 60
member functions, 225
Member Functions, 223
Menu Help, 10
menus, 12
message, 177
message flow, 203
message name, 177, 184
message type, 185
messages, 192
messages passed, 176
messages received, 190
messages sent, 190
method, 138
Method Definition dialog box, 149, 225
methodologies for process modeling, 58
Methods, 148, 223
methods field, 150
Methods field, 223
methods window, 150
migrate data elements, 235
migrate foreign keys, 231, 236
minimize diagrams, 7
Model Balancing, 13
model balancing rules, 13
model errors, 3
models, 1
modify user list, 12
modifying an existing view, 13
modularity, 62
module, 128
Module, 222, 225
modules, 127, 218
move backwards through repository entries,

217
move name of a line, 72
movement of items, 110
moving a symbol, 70 Multi-
page, 67
multiple incoming transactions, 158
multiple open diagrams, 7
multiple views, 93

N
name, 137, 192, 223
Name, 220, 225
name couple, 135
name of message, 184
name of parent item, 220
name of the attribute, 145, 220
name of the child class, 143
name of the child entity, 143
name of the parameter, 149, 225
name of the parent, 117
name of the parent class, 143
name of the parent entity, 143
name of the repository item, 218
name of the source object, 192
name of the target object, 192
name of the use case, 172
names of data flows, 111
Names Per Relationship, 65
navigating the repository, 226
Nest, 12, 112, 116, 117, 156
nest a process, 116
nested decompositions, 122
nesting, 108, 112
network activity information, 12
New, 96
New button, 223
New Diagram, 10, 66, 82, 131, 139
new diagram dialog box, 66
New Project, 64
new project dialog box, 64
next button, 226
Next button, 216, 229, 230
No Location entries, 229
non-key attribute, 235
non-transitory storage device, 222
normal, 143
normal class, 138
normalization, 57
Normalization, 101, 102
normalization errors, 101
normalizing data, 57
note, 190
note link, 191
Notes field, 214, 219
noun, 55, 56, 58
number of attribute occurrences, 221

Where To Go From Here

[Type here] [Type here] [Type here]

number of names per relationship line, 96
number of occurrences of an attribute, 145
number of parameters, 148, 149, 224, 225
numeric relationships, 138
numerical scope of associations, 56

O

object, 93, 176, 190
object browser, 12
Object Browser, 13
Object Class Model, 4
object classes, 192
object definitions, 60
object deletion, 177
object instances, 192
object link, 191
object links, 192
Object menu, 9, 98, 112, 113, 120
Object Menu, 10
object methods, 192
object model, 1, 60, 61
Object Model, 4
Object Modeling and Design, 137
object repository components, 220
Object Type, 76
objectives of structured planning, 55
object-oriented approach, 5
object-oriented concepts, 60
Object-oriented modeling, 60
objects, 3, 178
objects participating in a business scenario,

190
occurs many times flag, 185
occurs multiple times. See off-
page connector, 81, 129
one-way transfer of control, 130
online help, 2
on-page connector, 129
open a parent diagram, 116
Open Diagram, 10, 112
open diagram icon, 112
Open diagrams, 7
open ellipse, 131
Open existing diagram, 10
open function icon, 112
operation, 138
operational flows, 127

operations, 138, 176
optional comments, 172
optional relationships, 57
options for generating a view, 102
Options menu, 12, 13, 115
order to perform an action, 177
ordered association, 143
ordered set of invocations, 131
Ordering, 143
Orientation, 67
output, 60
output data flow, 58
output data flows, 118
output flows, 113
output transactions,, 158
outputs, 4

P

Page, 12
page connector, 81
Page Size, 67
parallel activities, 158
parallel behavior, 158
parameter passing, 127
parameter type, 149, 225
parent, 81
Parent, 116
parent class, 137
parent class contains the child, 137
parent entry type, 220
Pass By, 225
Pass By., 149
passed parameters., 240
passing data between a module and a data only

module, 130
passing of control, 59
passing of data, 60
passing of parameters, 59
passing parameters, 60
paste, 7
Paste, 10, 13, 71
pasting a symbol, 70
PERFORM statements, 240
performance of actions, 158
period of the interaction, 176
Persistent class, 222
physical characteristics, 145, 149, 221

Index

 Page 70

Physical Characteristics, 225
physical model, 61
PK, 232, 234, 235
planning, 1
Planning Statement, 38, 41, 42, 48, 51, 52
pointer, 148, 149, 221, 224, 225
pool, 203
populate composition of repository entry, 217
populating a top-level diagram, 112
Position Symbol, 68
primary key, 232, 235
primary key notation, 235
primary keys, 93
primary select clause, 95
Print, 10, 12
printer drivers, 7
Prior button, 216, 226, 229
Private, 145, 148, 221, 224
private visibility, 139
procedure, 60
procedure call, 191
process, 81, 108
Process, 103
process decomposition diagram, 80, 124
process decomposition diagrams, 63
process decomposition model, 124
process model, 61, 109
Process Model, 4
Process modeling, 57
process models, 5
process numbering, 109
process symbol, 81, 83, 108
process symbol number, 112
process view, 103
processes, 1, 4, 56, 58, 79, 218
product information, 14
Product Model, 4
program, 60
programmatic modules, 154
programming modules, 127
Project Database, 4
project details, 127
Project Name field, 51, 52, 64
Project Scope, 242
properties, 60
proposed operations, 3
Protected, 145, 148, 221, 224
protected visibility, 139

provide focus for requirements analysis, 55
pseudo code, 2, 62
pseudo-code, 127
pseudo-relationships, 95
Public, 145, 148, 221, 224
public visibility, 139
Pure Virtual, 224
purpose of structured design, 127

Q

Qcomp button, 146, 150, 220, 223
Qualification, 145, 148, 149, 221, 224, 225
qualification flag, 137
qualifier, 148, 149, 221, 224, 225
qualifier names, 143

R

Real Time Model, 4
reasons for top-level diagram, 108
rectangle, 81, 155, 158, 179
rectangle with dashed lines and double lines,

129
rectangle with dashed sides, 129
rectangle with right side open, 109
rectangle with rounded convex sides, 129
rectangle with rounded lines across each

corner, 94
rectangle with solid borders, 128
rectangle with straight diagonal lines across

each corner, 94
rectangles, 139
recursive call, 181
Redisplay the Labels, 76
Reference, 145, 148, 149, 221, 224, 225
reference method, 137
relational database, 56
Relations field, 222
relationship, 94, 138, 154
relationship structure, 159
relationship type, 152
relationships, 60, 218
relationships between entities, 4
relationships between states, 155
remove a friend, 226
remove methods, 223
remove partially drawn lines, 13

Where To Go From Here

[Type here] [Type here] [Type here]

removes the current parameter, 149
Rename/Move, 13
repeating subgroups, 94
Report Query, 10
Report Scope, 242
Report Type, 242
Reports, 10, 13, 241
repository, 1, 5, 7, 62, 93, 95, 214
repository access, 13
repository control buttons, 215
Repository dialog box, 218, 220, 226, 230
repository entries, 80
Repository menu, 13
Repository model, 4
Repository Object menu, 146, 220, 222
repository objects, 7
repository pages, 220
repository reports, 241
Repository Reports dialog box, 241
resize object browser, 12
Restore, 13
return, 148, 177, 187, 191
return arguments, 177
return flows, 127
return from a procedure call., 191
return message from an object, 177
return type, 224
return value, 223
Returns, 224
reusability, 62
reverse engineering, 1
reverse relationship, 100
right mouse button, 9
role names, 143
roles that generalize, 170
roles user plays, 168
rounded rectangle, 81
row of buttons, 10
rubber-banding, 72
rule set, 65
Ruler, 13
rules, 5
Rules box, 65
rules methodology, 80
Rumbaugh, 137

S
SA, 5
Save, 10, 12, 77, 97
Save button, 216
save changes to an entry, 216
Save diagram, 68
SC, 127
scaling, 67
schema generation, 13
Scope, 98, 230
SD, 5, 127
Search, 144
search button, 84
Search button, 216, 224, 225, 228, 230
Search criteria, 228
Search Criteria button, 217
Search dialog box, 226, 230
search for names, 84
Search list box, 226
search mode, 10
Searches Affected box, 229
Searching for entries, 227
Security, 13
select a flow to split, 120
select a line, 118
Select box, 230
Select button, 226
select database engine, 65
select diagram type, 173
select existing flow to be a subflow, 121
Select Flows from Diagram box, 121
select function, 90
select line, 89
select line type, 63
Select line type, 156
Select list box, 226
Select point size, 241
Select Process for Views dialog box, 103
select statement, 95, 239
Select the diagram type, 155
Select typeface, 241
select workspace, 173
Select workspace, 155
selected line, 133
selected object, 9
Selecting a Block, 9
selecting a diagram object, 9

Index

 Page 72

selecting caption position, 73
selecting diagram type, 96
selecting lines, 72
selecting page size, 96
selecting symbol, 70
selecting workspace, 139
selection box, 85
selection mode, 11, 69
selection mode button, 88
self call, 177
self-delegation, 191
self-destruct, 177, 183
sequence diagram, 176
sequence flow, 201
sequence number, 193, 194
sequence of output transactions, 158
sequential object, 222
set, 143
set caption text mode, 73
set of activities, 168
set of couples, 130
set of transactions, 168
set physical characteristics, 225
set report font, 241
Set Search Criteria dialog box, 228
set zoom level, 96, 116
Set zoom level, 131
setting the zoom level, 139
setting zoom level, 155
sharing of attributes, 138
sharing of operations, 138
shell code generation, 13, 240
Shell Code Generation, 214
SHIFT+F1, 10
SHIFT+F10, 10
Shortcut keys, 10
Show Line Names, 13
Show Symbol Names, 13, 76
Single Arrow, 134
size of parameter, 148, 149, 224, 225
small circle, 129
Snap Symbols, 10, 83
solid line, 170
solid line with a stick arrowhead, 159
Sort Sequence, 242
source of operations, 108
source/sink, 110
source/sink,, 58

source/sinks, 107, 218
Spawn, 12, 90, 112, 116
spawning, 79, 90
special form of a state diagram, 158
specific object from a class, 138
Specifications for testing, 127
specify hierarchical relationships, 81
specify to search repository, 217
specify values for arguments, 192
Split Data Flow, 120
splitting data flows, 120
SQL DDL, 239
SQL schema, 13
SQL view, 239
standard class, 138
standard repository report, 10
start object, 159
State, 154
state element, 155
state entity, 155
state model, 61
state transition diagram, 154
State Transition Diagram, 155
state transition model, 1, 154, 155
State Transition Model, 4, 61
Static, 145, 148, 221, 224
static model, 61
STD, 155
steps an object passes through, 154
stick arrowhead, 191
stores, 4
Strategic Planning, 20, 21, 26, 34, 45, 47, 48,

49, 50
Structure, 138
structure chart, 2, 59, 60, 61, 127, 128
Structure Chart, 4
structure chart diagramming symbols, 128
structure chart model, 1
structure charts, 81, 127
structured analysis, 57, 127
Structured Analysis, 5, 92
structured design, 127
Structured design, 59, 127
Structured Design, 5, 92
Structured Modeling, 92
structured modeling techniques, 55
structured Planning, 55
Structured Query Language, 239

Where To Go From Here

[Type here] [Type here] [Type here]

Stylize, 69
stylize a symbol, 69
Stylize Symbol Dialog Box, 70
stylizing a symbol, 69
subclasses, 4, 60
subflow, 121
subflows, 120
subfunctions, 55
subroutine, 60, 128
sub-select clause, 95
subset of classes, 137
subset of data, 93
subset of data model, 96
subsystems, 55
subtype, 138
subtype entity, 94
supertype entity, 94
support information systems, 1
supported statements, 239
swimlane, 159, 203
symbol adding mode, 11, 68
symbol button, 118
Symbol Color, 76
symbol cursor, 11
symbol drawing mode, 81
symbol entry mode icon, 96
Symbol Labels, 77
symbol mode cursor, 93, 94
symbol-adding mode, 81
symbol-adding mode cursor, 108
symbols, 11, 139
Symbols, 13
synchronization bar, 158, 161
Syntax Check, 101
Syntax errors, 152
system analysis process, 120
system boundary, 168

T

T, 187
T button, 73
TAB key, 9
table information, 220
tables, 95
tall thin rectangle, 177
Terminator Type, 133, 134
test completeness, 3

test consistency, 3
test data, 62, 127
test information systems, 1
test rule compliance, 3
Text, 10, 13
text adding mode, 10
text cursor, 11
text editor, 214
Text field, 68
Text Settings, 13, 73, 76, 241
Text Settings Dialog Box, 74
Text Type, 77, 241
The base class, 143
the data flow diagram, 58
the development of physical programming

modules, 2
thorough documentation, 244
Tile, 14
time, 176
time sequence, 176, 178
to, 192
to identify the data flowing into a process, 58
to insert a new parameter, 149
tools menu, 13, 14
top level diagram, 92
top-down design map, 4 top-
level diagram, 107, 108
transform data, 108
transformations of data inputs and outputs by

processes, 57
transition, 154
transition lines, 163
transition steps, 154
transitions, 156, 158, 159
triggers, 4
Triggers, 154
triggers that change state value, 156
Type, 145, 220, 225
Type field, 145, 225
type of message, 192
type of relationship, 143
type of relationship line notation, 65
type of visibility, 137
types of analysis, 80
types of keys, 235
types of qualifiers, 143
types of roles, 143

Index

 Page 74

U
Unattached objects, 122
unconditional procedure call, 185
undefined entries, 229
Undefined entries, 229
Undo, 10, 13
undo move line, 13
undo moved line, 10
Union, 138
union select clause, 95
unnamed data flow, 122
unordered association, 143
Unselect diagram object, 10
unstructured diagram, 63, 95, 112
Unstructured diagram, 65
Update DFDs, 91
update existing DFDs, 91
use case, 168
use case diagram, 168
Use errors, 152
user goals, 168
user information, 14
user-defined attributes, 13
user-defined object definition, 13

V

validate new information processes, 1
Value, 145, 148, 149, 221, 224, 225
Values & Meanings field, 219
Values button, 192
vertical axis, 178
vertical dimension, 176
view, 93
View, 96
View menu, 13, 93

View Object, 95
View of Data Model, 102, 103
views, 4
Virtual, 148, 224
virtual class, 222, 224
virtual table, 95
Visble Analyst architecture, 5
visibility, 139
Visibility, 145, 148, 221, 224
Visible Analyst basic components, 5
Visible Analyst Control menu button, 8
Volatile, 145, 149, 221, 225

W

warning messages, 60
Window menu, 14
Windows Clipboard, 7, 70
Windows Multiple Document Interface, 7
Windows-specific features, 7
workspace, 7
Workspace, 67

X

X, 177, 183

Y
Yourdon, 80, 109, 110, 111
Yourdon/Constantine, 60
Yourdon/DeMarco, 58

Z

Zachman Framework, 1, 3, 5, 15, 16, 17, 18
zoom level, 82

	Getting to Know Visible Analyst
	INTRODUCTION
	FAST TRACK USERS
	Note

	OVERVIEW OF MDA CONCEPTS
	The Basic MDA Models
	Visible Analyst Choices

	VISIBLE ANALYST OVERVIEW
	Visible Analyst Architecture
	Figure 1-1 Visible Analyst Workspace

	Windows Version Features
	The Application Workspace
	Windows Configuration
	Multiple Document Interface
	Figure 1-2 Visible Analyst Multiple Document Interface

	Selecting a Diagram Object
	Left Mouse Button
	Right Mouse Button
	Notes

	Double-Click
	TAB Key
	Selecting a Block
	Deselecting Objects
	Shortcut Keys
	Control Bar
	Figure 1-3 The Control Bar for Entity Relationship Diagrams with All Tool Bars Displayed
	Figure 1-4: The Symbol Cursor
	Figure 1-5: The Line Cursor
	Figure 1-6: The Text Cursor
	Figure 1-7: The Couple Cursor

	Help Bar
	Object Browser

	Menus
	File Menu
	Edit Menu
	View Menu
	Options Menu
	Repository Menu
	Diagram Menu
	Tools Menu
	Window Menu
	Figure 1-8 Cascaded Multiple Diagram Windows

	Help Menu
	Note
	11-1 Completed State Transition Diagram

	Activity Diagramming
	OVERVIEW
	DEFINITIONS
	RELATIONSHIPS
	Figure 12-1 Activity Methodology Symbols

	DEVELOPING YOUR ACTIVITY DIAGRAM
	Designating the Starting Point
	Adding A Synchronization Bar
	Adding Activities
	Adding Decisions To A View
	Adding Stopping To A View
	Adding Transitions To A View
	Adding Labels to Transition Lines
	Adding Swimlanes To A View
	Figure 12-2 Activity Diagram

	Working with the Repository Functions
	OVERVIEW
	Note
	Figure 17-1 Blank Repository Dialog Box, Page One

	REPOSITORY BASICS
	Repository Control Buttons
	Figure 17-2 Repository Dialog Box Control Buttons

	Editing Keys
	Field Types
	Label Field
	Entry Type Field
	Note
	Description Field
	Alias Field
	Attributes Field
	Values & Meanings Field
	Discriminator Values & Meanings Field
	Notes Field
	Location Field
	Other Pages and Fields

	Object Repository
	Attributes
	Attached Entities/Classes
	Relations
	Long Name
	Class Characteristics
	Figure 17-3 Class Attributes
	Figure 17-4 Class Methods
	Note

	Arguments for Methods
	Friends

	Navigation Capabilities
	Note

	Search Capabilities
	Figure 17-5 Repository Search Dialog Box
	Setting the Search Criteria
	Figure 17-6 Setting Repository Search Criteria
	Using Search to Add Items to a Field
	Figure 17-7 Add Information with Search

	ADVANCED REPOSITORY FEATURES
	Adding Information to the Repository
	Figure 17-8 Student Driver Attribute Information

	Key Analysis and Key Synchronization
	Figure 17-9 Key Analysis Error Messages
	Figure 17-10 Key Synchronization Messages

	View Objects
	Note

	Generate Database Schema
	Figure 17-12 Generated SQL Schema

	Shell Code Generation
	XML Generation
	Repository Reports
	Figure 17-13 Repository Reports Dialog Box

	Where To Go From Here
	OVERVIEW
	REAL WORLD APPLICATION
	WHAT TO DO NEXT?
	CONCLUSION
	#
	,
	:
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	O
	P
	Q
	R
	T
	U
	V
	W
	X
	Y
	Z

