
Visible Analyst Tutorial

 pg.

P a g e | 1

Visible® Analyst
Tutorial

Visible Systems Corporation
24 School Street, 2nd floor

Boston, MA 02108
617-902-0767

www.visiblesystemscorp.com

https://twitter.com/VISIBLECorp

Email: contact@visiblesystemscorp.com

http://www.visiblesystemscorp.com/
https://twitter.com/VISIBLECorp

Visible Analyst Tutorial

2

Enterprise-wide Analysis, Design
and Planning for Improvement.

 4

Information in this document is subject to change without notice and does not represent a commitment on the part of
Visible Systems Corporation. The software described in this document is furnished under a license agreement or
non-disclosure agreement. The software may be used or copied only in accordance with the terms of this agreement.
It is against the law to copy the software onto any medium except as specifically allowed in the license or non-
disclosure agreement.

No part of this manual may be reproduced or transmitted in any form or by any means, electronic or otherwise,
including photocopying, reprinting, or recording, for any purpose without the express written permission of Visible
Systems Corporation. Visible Systems Corporation makes no representations or warranties with respect to the
contents or use of this manual, and specifically disclaims any express or implied warranties of merchantability or
fitness for any particular purpose. Names, dates, and information used in examples in this manual are fictitious and
only for examples.

Copyright 2008 – 2020 by Visible Systems Corporation, All rights

reserved. Printed and bound in the United States of America.

This manual was prepared using Microsoft Word for Windows.

Visible Analyst
Tutorial on Structured Methods, Repository Management and The Zachman Framework

Visible Analyst® is a registered trademark of Visible Systems Corporation.

The Zachman Framework illustration on the cover page of this tutorial was printed and used with the permission of
the Intervista Institute © 2004 (www.intervista-institute.com). Microsoft and Windows are registered trademarks of
Microsoft Corporation. Other product and company names are either trademarks or registered trademarks of their
respective owners.

http://www.intervista-institute.com/

Visible Analyst Tutorial

5

Dear Colleagues:

Thank you for your time in selecting our product, the Visible Analyst. At Visible, we take your time and
effort seriously. To that end, we pride ourselves on delivering the most appropriate, value-oriented
solutions. And, we feel that we offer the very best in product support that often differentiates us from
our competitors.

As you read though the tutorial, please take the time to understand that our approach to software development is one
of a model driven approach. Within the framework of this approach, Visible, in part, supports the Model Driven
Architecture (MDA) as defined by the Object Management Group (OMG). This group, commonly referred to as the
OMG, is an open membership, not-for-profit consortium that produces and maintains computer industry
specifications for interoperable enterprise wide applications. For more information about the OMG and in particular
their MDA specification, please reference their web site at http://www.omg.org/mda/.

In conjunction with a model driven approach, Visible has incorporated a framework to enable you to better plan and

manage your Enterprise Architecture effort. In this edition, The Zachman Framework, is the framework of choice.
However, you can customize the Visible Analyst to implement other frameworks like, for example, the US Federal
Enterprise Architecture Framework (FEAF).

Visible Systems Corporation. Visible Analyst, Visible Developer, Visible Data Governance, Visible Web Portal, Visible Self
Service Data Discovery, Visible Sight (Context-driven business insights), Razor SCM, Polaris (Task Management).

http://www.omg.org/mda/

Sequence Diagramming

Sequence Diagramming

OVERVIEW
A sequence diagram is a type of interaction diagram. Interaction diagrams describe how
groups of objects interact and collaborate in performing a behavior. There are two types of
interaction diagrams that basically model the same information: sequence diagrams and
collaboration diagrams. In a sequence diagram, the interaction is modeled in time sequence.
Generally, an interaction diagram captures the behavior of a single use case. The sequence
diagram shows several objects participating in the interaction and the messages that are
passed among these objects. The diagram shows the objects by their ''lifelines'' and the
messages that they exchange arranged in time sequence. It does not show the associations
among the objects. The associations can be obtained from the complementary collaboration
diagram.

A sequence diagram has two dimensions: the vertical dimension represents time and the
horizontal dimension represents different objects. Normally time proceeds down the page.
(The dimensions may be reversed if desired.) Usually only time sequences are important; but
in real-time applications, the time axis could be an actual metric. There is no significance to
the horizontal ordering of the objects. Often call arrows are arranged to proceed in one
direction across the page; but this is not always possible, and the ordering does not convey
information.

DEFINITIONS
The components of the sequence diagramming process include:

Object An object is defined as an instance of a class. It is drawn as a

rectangle with the name of the object and class name inside the
rectangle.

Class A class is a group of objects with the same data structure

(attributes) and behavior (operations). A class is an abstraction that
describes properties that are important to an application.

Lifeline The lifeline represents an object‘s life and existence during the

time period of the interaction. A dashed vertical line is the symbol
of a lifeline. An object symbol is drawn at the top of the lifeline.

7

Sequence Diagramming

Activation An activation shows the time period during which an object is
performing an action. It represents both the duration of the action
in time and the control relationship between the activation and its
callers. An activation is shown as a tall thin rectangle whose top is
aligned with its initiation time and whose bottom is aligned with its
completion time. Activation symbols are drawn on the top of an
object‘s lifeline.

Message A message is a communication from one object to another, usually

communicating an order to perform an action. A message is
represented by a horizontal solid arrow from the lifeline of one
object to the lifeline of another object. The time order in which
these messages occur is shown top to bottom on the page. Each
message can be labeled with a message name, conditions, return
arguments, etc.

Self Call This is a message that an object sends to itself. It is represented by

a message arrow originating at the object lifeline and looping
around to end at the same lifeline.

Object Deletion Objects that are deleted by a message or self-destruct during the

time period of the interaction have a large X drawn at the bottom
of their lifeline.

Return A return is a message that is not a new message, but rather a return

message from an object to which a new message was previously
sent. It is labeled with a dashed line rather than a full line.

Condition Some messages are sent only when a certain condition is true. In

this case, you can label the message with the controlling condition.

Asynchronous Message An asynchronous message is one that does not stop the caller
object from continuing processing.

Sequence Diagramming

Figure 14-1 Sequence Diagram Symbols

DEVELOPING YOUR SEQUENCE DIAGRAM
The sequence diagram primarily is composed of a group of objects and the messages that are
passed between them.

Adding Objects
Objects are the basic building blocks of the sequence diagram. The objects are usually placed
horizontally across the page in no particular order, while the vertical axis denotes time
sequence. Objects used on the sequence diagram may already exist in the repository, or they
may be new objects created during the time period of the interaction.

9

Sequence Diagramming

Each object will have a dashed vertical line under it, representing its lifetime. If the object is
created or destroyed during the period of time shown on the diagram, its lifeline starts or stops
at the appropriate point. Otherwise, it goes from the top to the bottom of the diagram.

Set the Zoom Level: 1 From the View menu, select 66% zoom so
that you can see all of the needed workspace.

Create a New Diagram: 2 From the File menu, select New Diagram.

 3 Select the diagram type Sequence.

 4 Select Standard Workspace.

 5 Click OK.

Add Object: 6 Click the first symbol button, the rectangle, on
the control bar. This is the object symbol.

 7 Place the cursor in the top left of the
workspace and left-click the mouse. The
object is drawn and you are prompted for an
object name and class name. Leave the object
name field blank. Type ―Application Entry
Window‖ as the class name. Click OK.

 8 You are prompted to create a new class if it
doesn‘t already exist. Click the Yes button.

 9 Add the rest of the objects as shown in the
Figure 16-2.

Save the Diagram: 10 Save the sequence diagram with the label
―DMV Sequence Diagram‖.

Sequence Diagramming

Figure 14-2 Sequence Diagram with Objects

Adding Activation Symbols
An activation represents the time period during which an object is performing an action. It
represents both the duration of the action in time and the control relationship between the
activation and its callers. An activation is shown as a tall thin rectangle whose top is aligned
with its initiation time and whose bottom is aligned with its completion time. The incoming
message may indicate the action. In procedural flow of control, the top of the activation

11

Sequence Diagramming

symbol is at the tip of an incoming message (the one that initiates the action) and the base of
the symbol is at the end of a return message.

In the case of a recursive call to an object with an existing activation, the second activation
symbol is drawn slightly to the right of the first one so that they appear to ''stack up'' visually.
Before drawing the second activation symbol, lengthen the size of the original activation
symbol by grabbing the symbol handles when the object is highlighted. After drawing the
second activation symbol on top of the first symbol, increase the width of the second symbol
so that it visually ―stacks up‖ over the first symbol.

Add Activation Symbol: 1 Click the second symbol button, the narrow
vertical bar, on the control bar. This is the
activation symbol.

 2 Place the cursor on the ―Application Entry
Window‖ object‘s lifeline, and click the left
mouse button. An activation symbol is drawn
on top of the object‘s lifeline.

 3 Add the other activation bars as shown in the
Figure 16-3. You can size the length of the
activation symbols by clicking on the
rectangle and dragging the edges.

Save the Diagram: 4 Save the sequence diagram.

Sequence Diagramming

Figure 14-3 Sequence Diagram with Activation Symbols Added

13

Sequence Diagramming

Adding Object Deletion
Objects can be deleted during an interaction during the time represented on a sequence
diagram. Objects that are deleted by a message or that self-destruct during the time period of
the interaction have a large X drawn at the bottom of their lifeline. In our example, the object
Application is created when a new application is received and is deleted after the application
has been processed.

Add Object Deletion: 1 Click the third symbol button, the X, on the
control bar. This is the object deletion symbol.

 2 Place the cursor under the ―Application‖
object lifeline and click the left mouse button.
An object deletion symbol is drawn. Add the
other object deletion symbols as shown in
Figure 16-4.

Save the Diagram: 3 Save the sequence diagram.

Sequence Diagramming

Figure 14-4 Sequence Diagram with Object Deletion Symbols Added

Adding Procedure Calls to the Diagram
Messages that are procedure calls can be passed from one object to another. It is basically a
command for the receiving object to perform a certain action. When adding any message,
there are certain pieces of information you are required to enter:

• Name. Name of the message.

15

Sequence Diagramming

• Type. A message can be of three types: procedure call, flat flow of control, or
asynchronous stimulus.

• Occurs Many Times. This is a flag that indicates whether a message is sent many times
to multiple receiver objects.

• Guard Condition. If the message is to be sent only if a condition is met, this field will
contain that condition.

In our example, the object Application Entry Window submits an application to the object
DMV Validation when a new application is accepted. This is an example of an unconditional
procedure call. The Application object sends a message to the object License to create a new
license. However, this message is sent only if the applicant passes the driving test. This is an
example of a conditional procedure call.

Add Procedure Call: 1 Click the first arrow button, the bold full

arrow on the control bar. This is the procedure
call arrow.

 2 Place the cursor on the activation bar under
the ―Application Entry Window‖ object and
click the left mouse button. Holding the left
mouse button down, drag the cursor to the
activation bar under the ―‖Application‖ object
and release the left mouse button. The Label
Message dialog box appears.

 3 The Label Message dialog box appears. Click
New Method and type ―New‖ for the name of
the method. Click OK to return to the Label
Message window. Click OK again to exit this
window.

Add Procedure Call with
Condition:

4 Place the cursor on the activation bar under
the ―Application‖ object and click the left
mouse button. Holding the left mouse button
down, drag the cursor to the activation bar
under the ―DMV Database‖ object and release
the left mouse button.

 5 The Label Message dialog box appears. Click
New Method and type ―Update Success‖ as
the method name. Click OK to return to the
Label Message dialog box. Type ―passed‖ in
the guard condition field and click OK.

Sequence Diagramming

 6 Add the rest of the procedure calls as shown

Save the Diagram:

7

in Figure 14-5.

Save the sequence diagram.

Figure 14-5 Sequence Diagram with Procedure Calls Added

17

Sequence Diagramming

Adding Return to the Diagram
An object can send a message in response to a message sent to it earlier. In our example, the
application object returns the message sent to it by the application entry window object.

Add Return: 1 Click the fourth arrow button, the dashed
arrow, on the control bar. This is the return
symbol.

 2 Place the cursor on the activation bar under
the ―Drive Test‖ object and click the left
mouse button. Drag the cursor to the
activation bar under the ―Application‖ and
release the mouse button. A return arrow is
drawn.

Save the Diagram: 3 Save the sequence diagram.

Adding Text Notes to the Diagram

Add Note: 1 Click the rightmost button on the toolbar, an
uppercase T. This is the Add Text button.

 2 Place the cursor under the procedure call
isdrvok() and click the left mouse button.
The Add Text window appears. Type
―passed = isdrvok()‖ and click OK. The note
is added to the diagram.

Save the Diagram: 3 Save the sequence diagram.

Sequence Diagramming

Figure 14-6 Completed Sequence Diagram

19

Where To Go From Here

Purchase your UML Diagraming and Modeling software today for only
$29 per month. It includes all UML notations.

Go to https://www.visiblesystemscorp.com/Subscriptions.htm

https://www.visiblesystemscorp.com/Subscriptions.htm

	Sequence Diagramming
	OVERVIEW
	DEFINITIONS
	Figure 14-1 Sequence Diagram Symbols

	DEVELOPING YOUR SEQUENCE DIAGRAM
	Adding Objects
	Figure 14-2 Sequence Diagram with Objects

	Adding Activation Symbols
	Figure 14-3 Sequence Diagram with Activation Symbols Added
	Figure 14-4 Sequence Diagram with Object Deletion Symbols Added

	Adding Procedure Calls to the Diagram
	Figure 14-5 Sequence Diagram with Procedure Calls Added

	Adding Return to the Diagram
	Adding Text Notes to the Diagram
	Figure 14-6 Completed Sequence Diagram

