

1

Visible Analyst®

Tutorial

Systems Corporation

Visible Analyst® Tutorial

A Model Driven Approach
To

Enterprise Architecture
Planning, Analysis, Design and Development

Systems Corporation

3

This tutorial was designed to work with the following versions of the Visible Analyst:

• Visible Analyst – Project and Team Editions
• Visible Analyst – Professional Edition
• Visible Analyst – University Edition
• Visible Analyst – Community Editions
• Visible Analyst – Student Edition

Information in this document is subject to change without notice and does not represent a
commitment on the part of Visible Systems Corporation. The software described in this
document is furnished under a license agreement or non-disclosure agreement. The software
may be used or copied only in accordance with the terms of this agreement. It is against the
law to copy the software onto any medium except as specifically allowed in the license or
non- disclosure agreement.

No part of this manual may be reproduced or transmitted in any form or by any means,
electronic or otherwise, including photocopying, reprinting, or recording, for any purpose
without the express written permission of Visible Systems Corporation. Visible Systems
Corporation makes no representations or warranties with respect to the contents or use of
this manual, and specifically disclaims any express or implied warranties of merchantability
or fitness for any particular purpose. Names, dates, and information used in examples in this
manual are fictitious and only for examples.

Copyright 2023 by Visible Systems Corporation, All rights

reserved. Printed and bound in the United States of

America.

This manual was prepared using Microsoft Word for Windows.

Visible Analyst
Tutorial on Structured Methods, Repository Management and The Zachman

Framework Visible® is a registered trademark of Visible Systems

Corporation.

The Zachman Framework illustration on the cover page of this tutorial was printed and used
with the permission of the Intervista Institute © 2004 (www.intervista-institute.com).
Microsoft and Windows are registered trademarks of Microsoft Corporation. Other product
and company names are either trademarks or registered trademarks of their respective
owners.

Visible Systems
Corporation
24 School Street
2nd floor
Boston, MA 02108

Technical Support: +1 617-902-0767

E-mail support@visiblesystemscorp.com

Internet: https://www.visiblesystemscorp.com

E-mail: sales@visiblesystemscorp.com

mailto:support@visiblesystemscorp.com
http://www.visiblesystemscorp.com/
mailto:sales@visiblesystemscorp.com

Dear Colleagues:

Thank you for your time in selecting our product, the Zachman Framework Edition of the Visible Analyst.
At Visible, we take your time and effort seriously. To that end, we pride ourselves on delivering the most
appropriate, value oriented solutions. And, we feel that we offer the very best in product support that
often differentiates us from our competitors.

As you read though the tutorial, please take the time to understand that our approach to software development is one
of a model driven approach. Within the framework of this approach, Visible, in part, supports the Model Driven
Architecture (MDA) as defined by the Object Management Group (OMG). This group, commonly referred to as the
OMG, is an open membership, not-for-profit consortium that produces and maintains computer industry
specifications for interoperable enterprise wide applications. For more information about the OMG and in particular
their MDA specification, please reference their web site at http://www.omg.org/mda/.

In conjunction with a model driven approach, Visible has incorporated a framework to enable you to better plan and
manage your Enterprise Architecture effort. In this edition, The Zachman Framework, is the framework of choice.
However, you can customize the Visible Analyst to implement other frameworks like, for example, the US Federal
Enterprise Architecture Framework (FEAF).

The following information outlines all you will need to know in order to get started in building your
Enterprise Architecture. We hope that your first project will be a success.

The project TEST is automatically installed and is used in conjunction with the tutorial file "tutor.pdf" written to
the installation directory and this tutorial book. Use the File | Select Project menu item to select this project.
Included is a backup file set of the Zachman project and a copy of the document "Visible Analyst
framework.doc" describing the project. This project and document explain which diagram or repository
entry is used as the cell artifact.

Perform this procedure to restore the project to the Visible Analyst.

* Open the Visible Analyst and choose the Tools | Restore menu item.
* At the first restore screen, click the Browse button next to the "Backup File Name" field.
* Point and click to the file "ZACHMANBACK.VSC" located in the VA\Zachman folder on the CD.
* Click on the file so that it is highlighted and click OK.
* The name of the project is displayed in the Name field on the restore dialog, so click the OK button.
* The second screen displays the path to the VA\Zachman folder, so click OK again to perform the restore.
* The project will be restored to the Visible Analyst.

Use the File | Open Diagram menu item to access the diagrams directly, or use the File | Zachman
Framework to display the framework. Click on a framework cell to view the artifact types associated
with the cell. Double clicking on an item will open the diagram or display the artifact’s repository entry.

Best Regards,

Mike Cesino
President & CEO
Visible Systems Corporation

http://www.omg.org/mda/

Getting to Know Visible Analyst

1

Lesson

Getting to Know Visible Analyst

INTRODUCTION
The Visible Analyst Zachman Edition provides a Model Driven approach for defining,
designing, building, testing, documenting and supporting Enterprise Architecture (EA),
information systems and software products. Model Driven Architecture (MDA) tools are
based on logical dissection of the real world into understandable models, processes and
components. MDA tools provide mechanisms for evaluating current information activities,
defining proposed changes, producing and validating new information processes and focusing
on changes that will enhance the performance and operation of the organization. The
successful use of MDA tools requires an understanding of the underlying concepts and logic
and a comfortable knowledge of the operation and use of the MDA tool.

Visible Analyst has been created to make the implementation of MDA techniques a logical,
flexible, natural and easy-to-perform process. Visible Analyst is a seamless MDA tool that
integrates all phases of planning, analysis, design, code generation, and reverse engineering.
Visible Analyst provides facilities for the development of function, object/class, state
transition, data, data flow (process), entity life history, activity, use case, sequence,
collaboration, component and structure chart (product) models for an information system. The
Business Process Modeling Notation (BPMN) in the Visible Analyst provides a modeling
notation that can be communicated to and understood by all business users, from the business
analysts developing the models, to the technical analysts implementing the model processes,
to the business people who manage and monitor the processes. An integrated repository
containing all defined model elements, extensive additional component definitions and free-
form notes and definition fields provides a continuous life-cycle library of the design and
development process. The Visible Analyst repository is used for reports of project content and
to generate various forms of schema and application software code.

These lessons have been designed to lead you through the Visible Analyst mechanics and to
demonstrate how easy Visible Analyst is to use. These lessons cover the entire development
process, from drawing functional diagrams to generating program code. You can follow the
lessons in sequence or you can select just the ones of interest to you. Like Visible Analyst
itself, you have the flexibility to use any piece of the tool in any order that is reasonable
within the project.

Getting to Know Visible Analyst

2

The tutorial also provides you with some insight into MDA concepts and underlying logic.
These concepts are basically simple and logical. They allow you to break the complex real
world into smaller and more manageable chunks that can be defined quickly and then be used
to build operational pieces that work in the complex real world. Each of the MDA models
provides a different view of the real world. Visible Analyst ties these models together and
provides a vehicle for using them to define and evaluate current information operations.
Proposed changes in the information processes, procedures and sequences are reflected into
the MDA models and then are used to build a new set for the proposed change operations.
The analysts, designers, developers and users interact with the Visible Analyst models and
data repository to verify and validate the information steps and procedures for their
organization and operations.

Once the architecture of the new information system is considered sound and solid, the
software designer proceeds to defining and building the new product components and the
software code. Visible Analyst supports the development of physical programming modules
through the structure chart model. It also supports the definition and recording of pseudo code
in the Visible Analyst repository. From these definitions and the data model, Visible Analyst
generates database schema, SQL code and application shell code. Test plans, sequences, test
cases and scenarios can also be generated in the repository notes fields.

One new feature of the Visible Analyst has been the additional support for the Business
Process Modeling Notation based on the Business Process Modeling Initiative developed by
the Object Management Group (omg.org). The complete specification can be downloaded
from the OMG website, www.omg.org. The primary goal of BPMN is to provide a modeling
notation that can be communicated to and understood by all business users, from the business
analysts developing the models, to the technical analysts implementing the model processes,
to the business people who manage and monitor the processes. The BPMN models describe
the sequence of business processes with support for parallel and conditional behavior.

FAST TRACK USERS
Those who like to work on the Fast Track should read Lesson 5 - Diagramming Basics and
follow the steps for creating a project, creating a diagram, and some optional settings that are
available with Visible Analyst. Lesson 5 gives you the basic skills for working with Visible
Analyst. We recommend that you work through the other lessons to discover the more
advanced features that make Visible Analyst a powerful tool. Throughout the tutorial are
references to features that are not demonstrated in the tutorial but that may be of interest to
you. You can find more information about these features in the Operation Manual, which can
be downloaded from our Web site using this link
http://www.visiblesystemscorp.com/Products/Analyst/manual.pdf. The online help
feature in Visible Analyst, accessed from the Help menu or by pressing F1, also provides you
with more information on the referenced subjects.

http://www.omg.org/
http://www.visiblesystemscorp.com/Products/Analyst/manual.pdf

Getting to Know Visible Analyst

3

Note

□ Since Visible Analyst is available in multiple configurations, the software you
purchased may not include all of the diagram types or advanced features
described in these lessons. The basic drawing techniques apply to all diagram
types, and you are encouraged to work through the brief exercise in Lesson 5 -
Diagramming Basics. Thereafter, you can skip chapters that do not apply to your
Visible Analyst package.

OVERVIEW OF MDA CONCEPTS
MDA concepts involve creating and defining different models or views of the real world and
then using these models to analyze and develop changes and modifications to the information
processes of the organization. Some of the models provide definitions of factual items such as
business functions, objects and data entities; others show how things flow, connect or relate to
one another. Some of the models evolve and expand to match reality and others are done as
snapshots, showing as-is and then as-proposed operations. The views are composed
graphically using symbolic objects, line connectors and some rules of logic and structure. The
objects are given names called labels that populate the data repository with entries that can be
retrieved, expanded, detailed and used to define and document the contents of the project.
There are logic rules for many parts of the models. The models can be tested and evaluated
for completeness, consistency, rule compliance and other factors. All of the models and the
repository are interrelated, and many share common components such as databases, objects
and/or actions. The development of the models is iterative, often requiring several sessions
before the models are complete and realistic. The ability to move from one model to another
and to work on different ones at different times is critical to a successful MDA tool.

The rules of MDA deal with the checking of consistency and logical structures such as
naming and complete linkages. Errors found in models are reported during the Visible
Analyst analyze process. These errors should be corrected to maintain consistency and
accuracy of the models. However, Visible Analyst, unlike software compilers, allows you to
continue with any reasonable MDA operation without waiting until you have corrected all
errors. This allows you to continue progress on the project and its components. However, it
also leaves you responsible for returning and correcting your errors.

The Basic MDA Models
The basic MDA models include:

Functional Decomposition Model (also known as a Business Model) - Shows the business
functions and the processes they support drawn in a hierarchical structure.

Getting to Know Visible Analyst

4

Entity Relationship Model (also known as a Data Model) - Shows the data entities of the
application and the relationships between the entities. The entities are things and the
relationships are actions. The data attributes can be defined for the entities via the repository
and then shown on the diagram. Entities and relationships can be selected in subsets to
produce views of the data model.

Object Model (also known as an Object Class Model) - Shows classes of objects, subclasses,
aggregations and inheritance. Defines structures and packaging of data for an application.

State Transition Model (also known as the Real Time Model) - Shows how objects
transition to and from various states or conditions and the events or triggers that cause them to
change between the different states.

Process Model (also known as the Data Flow Diagram) - Shows how things occur in the
organization via a sequence of processes, actions, stores, inputs and outputs. Processes are
decomposed into more detail, producing a layered hierarchical structure.

Product Model (also known as a Structure Chart) - Shows a hierarchical, top-down design
map of how the application will be programmed, built, integrated and tested.

Use Case Model – Shows the relationship between a user and a computer system.

Activity Model – Is a special form of state diagram where states represent the performance of
actions or sub-activities. Transitions are triggered by the completion of the actions or sub-
activities.

Sequence Model – Shows how objects collaborate in some behavior.

Component Model - Component diagrams allow you to show the structural relationships
between system components.

Entity Life History Model - The Entity Life History models show how events in a system
affect data entities.

Collaboration Model – Shows an interaction organized around the objects in the interaction
and their links to each other.

Business Process Modeling Notation- Provides a modeling notation that can be
communicated to and understood by all business users, from the business analysts developing
the models, to the technical analysts implementing the model processes, to the business
people who manage and monitor the processes.

Getting to Know Visible Analyst

5

Repository or Library Model (also known as the Project Database) - Keeps the records of
all recorded objects and relationships from the diagrams and allows for the definition of
detailed specifics and extensions of the individual items. Used for evaluation, reporting and
generation of details about the project and its products.

Visible Analyst Choices
Today systems designers have multiple choices. They can follow the Structured Analysis and
Structured Design (SA/SD) approach and build on functions/processes, data models and
product concepts; or they can follow the object-oriented approach and build class hierarchies,
dynamic states and functional/process models. Both approaches can build better information
systems, and both cover similar aspects of information systems definition. However, both use
different sequences of effort and focus on different aspects of the project. Visible Analyst
allows you to choose either approach or to combine the approaches to develop a
comprehensive product definition, design and development mechanism.

There are five keys to using Visible Analyst, or any MDA tool. The first key is to develop the
discipline to apply and follow the steps and procedures of the technique. The second key is to
develop skills in conceptualizing the MDA models to represent the real-world requirements.
The third key is to be consistent in how you define and describe the real world. The fourth key
is to strive to be complete in the definition of all of the major parts of a real-world application.
The fifth key is to progress from the conceptual to the operational specifications and
construction of a working information systems process.

VISIBLE ANALYST OVERVIEW

The basic components of Visible Analyst are a set of diagramming tools, a rules module, and
a repository module. Diagramming tools are used to construct the “blueprints” of your target
system. These lessons guide you in the creation of diagrams and provide you with basic
information on the uses of the diagrams.

A system is designed and constructed according to rules, and the rules module manages the
methodologies of Visible Analyst tools for you. Visible Analyst allows you to choose the rule
set you prefer to use as a guideline for the development of your system. These rules are
important in determining the appearance of your diagrams, as well as the entire structure of
your system. For the purposes of the tutorial, you are introduced to the supported techniques

Getting to Know Visible Analyst

6

Standard
Tool Bar Diagram

Tool Bar Font Tool
Bar

Control
Bar

View
Tool Bar

Object
Browser Diagram Workspace

Help Bar
Project Root

and learn how to designate the rule set to use and the different symbol types used for each
rule’s methodology.

Figure 1-1 Visible Analyst Workspace

The repository module controls the individual repositories of each of your projects. A
project’s repository stores detailed information about objects that are used in developing a
system. An object in the repository includes processes, entities, relationship lines, classes, etc.
The type of information contained in the repository for each object includes description,
composition, values and meanings, location references, and other very specific detail
information (see Lesson – Working with The Repository Functions for details). The
repository makes Visible Analyst a very powerful systems development tool. Visible Analyst
is much more than just a diagramming tool; its repository and rules set provide definition,
documentation, and consistency capabilities for the entire system. Visible Analyst has
advanced features enabling you to generate reports and code for your target system, using the
information contained in a project repository.

Getting to Know Visible Analyst

7

Windows Version Features
This section highlights some of the Windows-specific features of Visible Analyst.

The Application Workspace
All work in Visible Analyst is done either in the main application workspace, shown in Figure
1-1, or in the repository, described in Lesson 16 - Repository Functions.

Windows Configuration
Visible Analyst configuration features controlled through Windows include the hardware
configurations, desktop colors, available printer drivers, and available fonts. Changes or
additions to these features can be made through Windows and are reflected in Visible Analyst.

Multiple Document Interface
The Windows Multiple Document Interface (MDI) allows multiple diagrams to be open at
one time. Open diagrams can be of the same or different diagram types (data flow diagrams,
entity relationship diagrams, etc.). Diagrams may be maximized, taking up the entire
workspace, sized so that several diagram windows are visible, or minimized to icons
appearing at the bottom of the application workspace. Any window larger than an icon is
editable. You can cut, copy, and paste to and from the Windows Clipboard to move objects
between diagrams and even between other Clipboard-aware applications.

Getting to Know Visible Analyst

8

Figure 1-2 Visible Analyst Multiple Document Interface

Note
□ Users not familiar with MDI Windows programs should take note: there is a

difference between the diagram Control menu button and the Visible Analyst
Control menu button. The former is in the top left corner of the diagram
window, or to the left of the File menu if the diagram is maximized. This
Control menu contains functions that affect the diagram only, such Maximize,
Close, etc. The latter is in the top left corner of the Visible Analyst window. The
Visible Analyst Control menu affects the whole Visible Analyst window and
program.

Selecting a Diagram Object
A diagram object is anything that appears on a diagram: symbol, line, text, or block. When
you click on an object with a mouse button, it becomes the current or selected object and you
can perform various operations on it. There are five different ways to select an object. The
following paragraphs describe the effect of selecting an object with the left mouse button, the

Getting to Know Visible Analyst

9

right mouse button, a double-click with the left mouse button, the TAB key and selecting a
Block.

Left Mouse Button
Clicking on an object with the left mouse button selects it. The object changes color to show
that it has been selected allowing you to make changes to the object or to move the object.
When a symbol or line is selected, text labels for that object are automatically highlighted.

Right Mouse Button
Clicking on an object with the right mouse button also selects it. In addition, the Object menu
appears containing all of the functions that can be performed on that object.

Notes

□ Unless stated to the contrary, instructions to click a mouse button refer to the left
button. Instructions for the right button are explicitly mentioned.

□ Left-handed mouse users: if you use a mouse with the buttons reversed, you should

reverse references to left and right mouse buttons in this text.

Double-Click
If you double-click on an object with the left mouse button, the repository entry for that object
appears. If the object is unlabeled, a dialog box for labeling the object is displayed. Double-
clicking is also used to indicate the end of a line.

TAB Key
To highlight only the text label for a selected symbol or line, press the TAB key until the
appropriate item is highlighted. (If the label is located outside the symbol, you can click on it
directly.) Continuing to press the TAB key sequentially selects each object on the diagram.

Selecting a Block
To select a block, meaning a group of objects, on a diagram, click and hold the left mouse
button and drag the mouse to draw a box around the objects. All objects completely contained
within that box change colors to show that they are selected. Once a block is selected, you can
perform various functions on the block such as cut, paste, move, change text settings for
contained objects, and other actions.

Deselecting Objects
To deselect any object or block, simply click the left mouse button on an empty area
anywhere on the diagram workspace outside of the object or block. The items that had been
selected return to their usual color. You can also use the Clear function on the Edit menu.

Getting to Know Visible Analyst

10

Shortcut Keys
Shortcut keys provide fast access to functions without using the menus. Some of the active
shortcut keys used in Visible Analyst are standard Windows shortcut control key sequences,
such as CTRL+P, which is the command for Print; others are specific to Visible Analyst. All
available shortcut keys are listed here.

CTRL+A Analyze Analyzes a diagram or entire project.
CTRL+C Copy Copies to clipboard.
CTRL+D Define Accesses the repository.
CTRL+E Connect Draws lines between selected symbols.
CTRL+F Find Accesses the search mode.
CTRL+L Lines Sets the cursor to line drawing mode.
CTRL+N New Diagram Creates a new diagram.
CTRL+O Open Diagram Opens an existing diagram.
CTRL+P Print Prints the current diagram or queue contents.
CTRL+Q Report Query Generates a custom repository report.
CTRL+R Reports Generates a standard repository report.
CTRL+S Save Saves the current diagram.
CTRL+T Text Sets the cursor to text adding mode.
CTRL+U Clear Deselects diagram object or block.
CTRL+V Paste Pastes from Clipboard.
CTRL+Y Snap Symbols Aligns selected symbols in a row.
CTRL+X Cut Cuts to Clipboard.
CTRL+Z Undo Erases partially drawn or undoes moved line.
DEL Delete Deletes object from diagram.
F1 Help Displays context-sensitive help.
ALT+R Delete Project Deletes a project with no project files.
SHIFT+F1 Menu Help Enters Help mode for menu items.
SHIFT+F10 Object Menu Displays repository object menu.

Another standard Windows shortcut method for accessing a menu item without using the
mouse is to press the ALT key followed by the underlined letter of the menu title or menu
item that you would like to access. For example, to access the File menu, press the ALT key
followed by the F key. It is not necessary to hold down the ALT key while pressing the F key.

Control Bar
The control bar, shown in Figure 1- 3, is located above the diagram workspace and gives you
quick access to commonly used functions and types of objects that can be added to a diagram.
The control bar can contain up to four tool bars.
• The standard tool bar contains basic buttons, such as Select Project, Open Diagram, etc.,

common to most Windows applications.
• The diagram tools tool bar contains the symbol, line, and text buttons appropriate for the

current diagram.

Getting to Know Visible Analyst

11

• The view tool bar contains controls that change the zoom level and entity/class view
level.

• The font tool bar contains controls that allow changing the current font characteristics,
such as font type, font size, etc.

You can customize the control bar by selecting Control Bar from the Options menu to
display the Customize Control Bar dialog box. Using this dialog box, you can select the tool
bars to be displayed and select control bar options such as Show Tooltips, Large Buttons, Flat
Buttons, and Hot Buttons. You can also right-click the control bar itself to display a
properties menu that allows you to toggle the individual tool bars on or off or to select the
Customize option. To change the size and position of the tool bars, click the left mouse
button on the “gripper” (the two vertical bars at the beginning of each tool bar) and drag the
tool bar to the desired position. From the Customize Control Bar dialog box, you can also
“undock” the diagram tools tool bar so that it appears in its own floating window.

The � button (shown in Figure 1-3) is used to change into selection mode (also called editing
mode). In selection mode, objects can be selected on the diagram to be changed or moved, or
a box can be drawn around many objects on a diagram, for moving, cutting and pasting, or
changing text settings for groups of objects. Click one of the drawing mode buttons, and you
can add that type of item to the diagram. The object types include symbols, lines, couples, and
caption text. When you choose one of the drawing mode items from the control bar to add to
your diagram, the cursor automatically changes to indicate that you are either in symbol, line
or couple adding mode, or caption text adding mode. Specifically, this means that while the
cursor is positioned inside the diagram workspace and it is something other than an arrow,
which indicates selection mode, clicking on the mouse adds an object to the diagram.

Figure 1-3 The Control Bar for Entity Relationship Diagrams

with All Tool Bars Displayed

For example, when the diagram tools tool bar is displayed on the control bar, you can easily
select the particular symbol you want to add to the diagram. A symbol is added to your
diagram centered at the cursor location anytime you click on the diagram workspace while the
cursor indicates symbol drawing mode.

Getting to Know Visible Analyst

12

Figure 1-4 Figure 1-5
The Symbol Cursor The Line Cursor

Figure 1-6 Figure 1-7

The Text Cursor The Couple Cursor

Help Bar
As you move through the Visible Analyst menus, a line of text appears on the help bar at the
bottom of the application workspace that briefly explains what that menu item does. The
current zoom level, current project and current object are also displayed. You can toggle this
feature off and on from the Options menu.

Object Browser
From the Options menu, you can choose to have the Visible Analyst object browser displayed
on your screen. The object browser displays a list of all the objects in the repository in a
resizable window. When there are no diagrams open, or the current window is the diagram
list, all objects are displayed. When a diagram is open, only those objects that are valid for
that diagram type are displayed. If an object appears on the open diagram, it is displayed in
bold. Double-click on a folder in the list to expand or collapse it; double-click on an object in
the list to display the Define dialog box. You can also click on an object in the list and drag it
onto your diagram. To resize the object browser, click on the right margin of the browser and
drag to the desired size.

Menus
The menus are arranged in nine groups for browsing and selecting the various features of
Visible Analyst. (Refer to Figure 1-1.)

File Menu
The File menu contains the functions for accessing and creating projects and diagrams. This
includes all of the functions that cause the opening of another diagram, such as Nest, Spawn,
and Page. (These functions are explained under the specific diagram type where each is
used.) It also includes a list of Recent Diagrams and Recent Projects. The Save, Print,
and Exit functions are also found in the File menu. If you are using a network version,
information about network activity and modifying the user list is contained in the File menu.

Getting to Know Visible Analyst

13

If you purchased a copy of the Zachman Framework Edition, the framework can be opened
and closed using the Zachman Framework option.

Edit Menu
The Edit menu contains the standard Windows editing functions including Cut, Copy, Paste,
Find and Delete. There is also an Undo function for removing partially drawn lines and
undoing a move line operation. The Strategic Planning options allow you to add a New
Statement, Promote, Demote, Move Up, or Move Down, a strategic planning statement.

View Menu
The functions contained in the View menu allow you to change the appearance of the active
diagram. There are functions to change the zoom level and to give you the ability to change
the items displayed on a diagram, including Show Line Names, Show Symbol Names,
Show Discriminators, Show Statement Types, Show Priority, Show Description,
Class and Entity Display Options, Physical Schema, Events, and Messages. Also on
the View menu are Grid and Ruler, functions that make it easier to position objects accurately
on a diagram.

Options Menu
The Options menu contains functions that allow you to change default settings for Visible
Analyst. For diagram drawing and manipulation settings, the functions include automatic
labeling of symbols and lines, Line Settings defaults, Text Settings defaults and diagram
Colors, as well as on/off settings for Security, the Help Bar, the Object Browser, and the
Control Bar. The Options menu also includes settings for interaction diagrams, model
balancing rules, SQL schema and shell code generation, DDS name translation, user-defined
attribute and object definition, planning statement types, Zachman Framework cell settings
and symbol template settings.

Repository Menu
All of the selections included in the Repository menu are functions performed on the
information contained in a project’s repository. These include Define, which allows
repository access, schema and shell code generation, schema / model comparison, Key
Analysis and Key Synchronization, Model Balancing, and repository Reports. The
Divisions function is used with the Enterprise Copy feature and is explained in the on-line
Help. The Divisions and Enterprise Copy feature are not available in the Visible Analyst
Student edition.

Diagram Menu
The Diagram menu contains functions for selecting, manipulating, and analyzing diagram
objects. These include functions for selecting Symbols, Lines, or Text to add to a diagram,
as well as functions for changing or stylizing a selected item on a diagram. The function for
analyzing the diagrams according to the selected rules methodology, modifying the diagram

Getting to Know Visible Analyst

14

settings and the function for modifying an existing view are also contained in the Diagram
menu.

Tools Menu
The Tools menu contains the various functions that can be performed on a project. These
include Backup, Restore, Copy Project, Delete Project, Rename/Move, Import, Export,
and copying information between projects. The utility for assigning user access to the multi-
user version of Visible Analyst is also found in the Tools menu. The Enterprise Copy and
Enterprise Tag Maintenance features are not available in the Visible Analyst Student Edition
but are explained in the on-line Help.

Window Menu
The Window menu allows you to change the arrangement of the open diagrams. Diagrams
can be automatically arranged in a Tile, Cascade, or minimized (icon) format. You can also
switch between open and minimized diagrams.

Getting to Know Visible Analyst

15

Figure 1-8 Cascaded Multiple Diagram Windows

Help Menu
The Help menu allows you to access the Help features, product and user information, and
Visible Analyst on the Internet.

Note

□ Detailed information about each of the menu options can be found in the Visible
Analyst Operation Manual and the online help system (accessed by pressing F1).

Structured Modeling Techniques

55

Lesson

Structured Modeling Techniques

OVERVIEW
The techniques for planning, process modeling, data modeling, object modeling, state
transition modeling and structured design assist in the creation of systematically correct and
consistent diagrams and documentation. Using structured and object techniques forces a
standardization of logic throughout the system under analysis. The benefits of this approach
are obvious:
• Large systems can be partitioned into component subsystems or sub-functions for further

analysis.
• Specifications for individual components are easier, faster, and more accurate to define

than the total system.
• The interaction between the parts can be planned, designed, evaluated, and implemented

to reflect improved information flows and controls.
• More than one person can work with the same system in the network edition.
• Standardized format and grammar enhance and simplify communication and

maintenance.

STRUCTURED PLANNING
Planning uses a structured technique based on functional decomposition for describing
interrelationships among broad organizational areas, specific organization functions, and the
systems that support those functions. Structured planning establishes organization
responsibilities at function levels and then defines the process responsibilities within
functions.

The objective of structured planning is threefold:
• To identify the specific business or organization function, including roles, goals, and

objectives, to be automated or reengineered.
• To identify the existing system processes that support that function.
• To provide a focus for requirements analysis in support of identified goals and objectives.

For example, functions or functional areas in an organization that could be decomposed could
be Finance, Sales, and Research. A function is usually designated by a noun. These functional

Structured Modeling Techniques

56

areas could then be subdivided into processes that are groups of activities necessary in
running the organization. The processes are usually defined in active state verbs. For example,
the Sales function could be decomposed into the Customer Relations, Selling, and
Management processes. These processes could then be further decomposed using a data flow
diagram. If a process is labeled as a noun, it is a signal that the process should be further
decomposed into more processes.

Because of the high-level functional nature of this type of modeling, the technique
specifically applies to functions and not to the data that those functions use. Since functional
decomposition modeling is viewed as the highest level of business planning, it is probably the
place to begin when you wish to define the overall functioning of an enterprise. There is no
rule that you must begin here, but other things are easier if you do. For designing individual
projects, it may be just as effective to start with a process model or a data model (or both at
once), for you might consider that the project does not have the breadth to warrant planning at
the FDD level1. You might also choose to focus on the definition of objects, beginning with
the object/class model.

STRUCTURED DESIGN
Structured design is the partitioning of a system into a hierarchy of modules that performs the
activities internal to your system. It is a technique used for representing the internal structure
of a program or system and its components. Structured design is a discipline that is
complementary to structured analysis and implements another stage in the software life cycle.
If data flow diagramming is the “what” of your system, structured design is the “how.” To be
most effective, it should be based upon specifications derived using structured analysis. The
capability to integrate analysis and design verifies that your designs reflect the reality of your
specifications.

The modeling technique used in structured design is the structure chart. It is a tree or
hierarchical diagram that defines the overall architecture of a program or system by showing
the program modules and their interrelationships. Visible Analyst uses the structural
information contained in the system model in the code generation process to create the precise
infrastructure of your system. This includes the passing of control and parameters between
program modules, as well as the specific order in which the modules are arranged in your
code.

Structured Modeling Techniques

57

A module represents a collection of program statements with four basic attributes: input and
output, function, mechanics, and internal data. It could also be referred to as a program, a
procedure, a function, a subroutine, or any other similar concept. A structure chart shows the
interrelationships of the modules in a system by arranging the modules in hierarchical levels
and connecting the levels by invocation arrows designating flow of control. Data couples and
control couples, designated by arrows, show the passing of data or control flags from one
module to the next. This is equivalent to passing parameters between functions or procedures
in an actual program.

The Visible rules implementation of the Yourdon/Constantine structured design methodology
is intended to maintain as much design freedom as possible for you, while guarding against
known poor design practices. The error and warning messages generated are intended to be
used as guidelines rather than rules.5

OBJECT-ORIENTED MODELING
Object-oriented modeling concentrates on developing a collection of discrete objects that
incorporate both data structure and behavior. The objects perform or are impacted by
operations that represent the action between objects. The focus is on building object
definitions that can be organized into a class hierarchy with high-level abstractions of a class
of like objects that provide inheritance of characteristics to subclasses and eventually to
individual instances or a unique occurrence. Objects can be brought together into groups
called aggregations, and they can have relationships and attributes (called properties) similar
to those found in the entity relationship model. In fact, the data model (ERD) is the basis for
object-oriented concepts with its entities and attributes.

OBJECT CONCEPTS
The object model is used to define and build the classes and subclasses of objects and the data
characteristics that uniquely define object groups. By developing a clear picture of object
structures and operations needed to support a business process, the designer can build
reusable object components and save time and effort in the development and testing phases of

5For more detailed information on the Yourdon/Constantine structured design technique you
can refer to the following books (the Page-Jones book is the better choice for beginners):

Page-Jones, M. The Practical Guide to Structured Systems Design. Englewood
Cliffs: Prentice-Hall, 1988.

Yourdon, E.N. and Constantine, L.L. Structured Design: Fundamentals of a
Discipline of Computer Program and Systems Design. Englewood Cliffs: Prentice-Hall,
1986.

Structured Modeling Techniques

58

the project. The object model is a static model in that it defines all of the objects that are
found in the application and the general and specific characteristics of each object.

The object model shows a static snapshot of the hierarchy and packaging of the objects. The
data model is a static snapshot of the data components of the application and the relationships
between data components. The data flow diagram (process model) shows the flow and
sequence of operations of the application. The state model shows the dynamic changes that
occur within the applications and to the objects over time. The structure chart (physical
model) defines how the application is assembled and built.

STATE TRANSITION (DYNAMIC) MODELING
The state transition model focuses on the changing conditions and states of an object. As an
object such as a Customer Order progresses through an organization, it changes its state from
a pending order to a shipped order to a paid order. The movement of the order from one state
to another changes some of the object’s properties and is usually caused by an event or a
method being applied to the object.

The dynamic model is built after the object model is defined. It provides a sequence of states
of the objects as they change over time. Thus the object model is static and complete, and the
state (dynamic) model is continuously changing with different events and triggers. The state
model is closest to reality and supports the programming design mechanics. If the programs
cover all of the state transitions of the objects, then the system should fit to reality.

The object and the state-transition model are linked to the functional model that describes the
data transformations of the system. The functional model can be represented by data flow
diagrams with processes and data flows showing how objects are serviced through their time
sequence transitions.6

OBJECT MODELING AND PROCESS MODELING
From the static snapshot of the objects, to the dynamic changes of states, to the sequence of
operations in the data flow, to the build specifications of the structure chart, object-oriented
methodologies provide a complete mechanism for defining, designing and building
information systems. Object concepts provide an alternative and a complement to the
structured design methodologies. Both approaches define the data components of the
application and provide a view of how the application needs to act to provide service and

6For a detailed discussion, refer to:

Rumbaugh, Blaha, Premerlani, Eddy and Lorensen. Object-Oriented Modeling and
Design. Englewood Cliffs: Prentice-Hall, 1991.

Structured Modeling Techniques

59

support to the application users. The differences are mainly in the focus on components, the
order of occurrence and the formats of packaging.

Both techniques and methodologies link to the happenings of the real world. They must both
produce working information systems. They also share many similar concepts, such as
reusability, modularity and hierarchical structures.

Visible Analyst supports both approaches to systems design and development. They can be
used separately, together, or in any combination that suits you. Through the integrated Visible
Analyst repository and the independence of the diagrams, you can maintain maximum
flexibility and still take full advantage of the engineering practices for designing and
developing better information systems.

DATA AND OBJECT RELATIONSHIPS
There is considerable similarity between entity and object models. Both focus on defining
physical components: in the entity model the only elements are data or data-oriented
components; in the object model, the focus is on real components that can be data, physical
units, goods, materials, etc.

The general consideration is that the object model follows the design of the data model, but
has made the application more worldly and generic.

LIBRARY MODEL
The library model contains the recorded information about all the pieces, parts, components,
actions and conditions of the project. As objects are placed on diagrams and labeled, the label
creates an entry in the library database for the proper data logic to support the type of graphic
object. The library model is dynamic and evolutionary and is used to describe all the known
factors and facets of the application and the systems development project. The Visible
Analyst repository is the implementation of a comprehensive library model. It contains all of
the labeled parts of the diagrams, and it provides a facility for expanding the details and
definition of many components of the project. The Visible Analyst repository can support the
building of data elements, database keys, pseudo code, test data and other specifications of the
application. Free-form notes and description fields allow recording extensive comments,
findings, important information, and other relevant factors about project components. Detailed
reports and the generation of database schema, shell code, and other useful project outputs are
derived from the library model.

The library model can serve the project design and development process, and it can be a
useful reference source for maintenance and operation of the system as well as a key resource
when changes need to be made to the system.

Diagramming and Repository Basics

63

Lesson

Diagramming and Repository Basics

INTRODUCTION
This lesson introduces you to the diagramming tools. You learn the basic techniques for
creating and modifying any type of diagram in Visible Analyst. We use the unstructured
diagram format that does not require you to “follow the structured rules.” This allows you to
concentrate on the basics of the drawing process without worrying about rules and the
repository. Sometimes you just want to draw a diagram, but not as a part of an analysis or
design project. (A number of examples are shown the Operation Manual.) Also, some
diagrams created from standard diagram types, such as cluster diagrams from entity
relationship diagrams (ERDs) and process decomposition diagrams from data flow diagrams
(DFDs), are always unstructured. You should know how to access them.

The basic techniques of drawing diagrams are valid for unstructured and structured diagrams.
We could just as well use the DFD type or the ERD type to teach basic diagramming
techniques, but not all users have a Visible Analyst version that contains all diagram types.
However, all Visible Analyst packages have unstructured diagram capability. The diagram
drawn in this lesson has no meaning other than as an exercise and is not part of any other
lesson.

CREATING A NEW PROJECT
Each project that you create represents one complete system. One project could also be used
to depict one unit in a very large system. By maintaining the entire system in one project,
Visible Analyst ensures that the entire system remains consistent throughout the entire
development process rather than checking for global consistency once all of the units have
been merged together. The LAN version of Visible Analyst allows multiple designers to work
on diagrams in the same project.

Note

□ Different types of lines are available for each type of diagram. You can select
the line type for any one of the other available diagram types for use with an
unstructured diagram. This selection must be made before a diagram is created.

Diagramming and Repository Basics

64

Open the Menu: 1 Click on the File menu with the left mouse button.

2 Select New Project. A dialog box like that in Figure 5-1

is displayed.

Figure 5-1 New Project Dialog Box

Name the Project: 3 Type TUTOR into the Project Name field. A project name

or “root” can be up to 128 characters long. It must begin
with a letter and can be composed of letters and numbers.

Describe the Project: 4 Click the cursor inside the field marked Description. Type

“Tutorial Project.” Another common method for moving
the cursor to other fields in a dialog box is to use the TAB
key. Try pressing the TAB key a number of times. The
highlighted selection changes as the cursor moves to a
new field. Press the TAB key until the cursor returns
to the Description field.

Diagramming and Repository Basics

65

The next steps help familiarize you with the options available when creating a project. If
a default is incorrect, you can click on the item to change the setting.

Select the database 5 Choose Btrieve as the database engine. Btrieve is
Engine: included with Visible Analyst.

Select the Rules to 6 In the box entitled Rules, select Gane & Sarson. This is
Apply: where you choose the rule set you want applied to your

project. An unstructured diagram does not follow any
rules, but it is necessary to select the type of rules to be
applied to all of the diagrams that might be created for
this project. (Rules are covered in more detail in Lesson 8
– Data Flow Diagrams.)

Select ERD Notation 7 In the area entitled ERD Notation, the default notation is
Conventions: IDEF1X. This selects the type of relationship line

notation you use on your Entity Relationship Diagrams.
Crowsfoot is selected as the alternate. (This is covered in
more detail in Lesson 7 – Entity Relationship Diagrams.)

8 In the box entitled Names Per Relationship, the default is

Two. This refers to how relationship lines on ERDs are
labeled.

Choose a Window Type: 9 Select the type of document window that will be

opened automatically after the project is created. If you
don't want a window opened (if you will be performing a
Reverse Engineering operation for example), choose
None.

Activate the Project: 10 Click OK to activate the project. When you do this, the

New Diagram dialog box is automatically displayed.

Now you have created a project. The name of your project is displayed in the lower right-hand
corner of the application workspace. If you turned off the help bar from the Options menu,
the project name is not displayed. The next step is to create a diagram.

Diagramming and Repository Basics

66

Figure 5-2 New Diagram Dialog Box

CREATING A NEW DIAGRAM
After creating a project and before creating a diagram, the screen should look just as it did
when you started Visible Analyst, except that the name of your project appears in the lower
right-hand corner. To create a new diagram, follow these steps:

Open the Menu: 1 Click on the File menu (or click the New Diagram button

on the standard tool bar).

2 Select New Diagram. A dialog box like the one in
Figure 5-2 is displayed.

Set the Diagram Type: 3 Open the selection box for the Diagram Type by clicking

the arrow at the end of that field. Select Unstructured. The
fields marked Boilerplate and Template should say None.

Diagramming and Repository Basics

67

A boilerplate is a template you can create to keep
information such as diagram creation date, diagram
created by information, and a diagram heading without
rewriting it each time you create a new diagram.
Templates allow you to add image files to an unstructured
diagram template file, and create unstructured diagram
using the images as the diagram symbols. (See the
Operation Manual or the online help system for more
information on boilerplates and templates. Boilerplates
and templates are not enabled in the Education Editions of
Visible Analyst.)

Select a Workspace: 4 In the area entitled Workspace, select Standard. This

sets your diagram size to one page. Multi-page allows
you to spread large diagrams over a workspace of 90 x 88
inches. You can go to larger pages as needed later, or
select them now if you know you are going to work on a
large diagram. (Multi-page is not enabled in the
Education Editions of Visible Analyst.)

Select Orientation: 5 In the Orientation area, select Landscape.

Select Page Size: 6 Open the Page Size drop-down list and select 8-1/2 x 11.

Select Scaling: 7 Accept the default scaling, 100%.

Create the Diagram: 8 Click OK to open a blank diagram.

The control bar is located just above the diagram and below the menu. The � button
is highlighted.

Above the menus, notice the title of your diagram. Since it has not been saved, it is marked
Untitled: US. The US indicates that the window contains an unstructured diagram.

EDITING A DIAGRAM

Adding Symbols to a Diagram
Now add symbols to the diagram to become familiar with the different methods for doing this.

Turn on Auto Label 1 Open the Options menu. There should be a check mark
Symbols: next to the selection Auto Label Symbols. This indicates

Diagramming and Repository Basics

68

that you are automatically prompted to label a symbol as
soon as it is drawn. If there is no check mark next to the
selection, set the option by clicking on the selection.

Change to 2 Click the first symbol button in the control bar, then
Symbol-Adding Mode: slowly move the cursor from button to button. As you

move the mouse over each button, a brief description
appears on the control bar describing its function. Icon
buttons are added to the control bar for each type of
symbol available to you for the current diagram type.
Only certain symbols are available for most types of
diagrams, but they are all available for an unstructured
diagram. When you move the cursor back over the
drawing area, it changes to indicate that you are in symbol
adding mode

Position the Symbol: 3 Place the cursor where you would like the symbol to

appear on the diagram and click the left mouse button.
The symbol is drawn. Because Auto Label Symbols is
turned on, a dialog box appears for labeling the symbol.

Label the Symbol: 4 Type “First” into the Text field.

5 Click the OK button.

Repeat for Another 6 Click the third symbol button and add it to the diagram
Symbol: as above.

7 Type “Second” into the Text field and click OK. Note that

the new symbol is now highlighted, indicating that it is
the current object, and the previous symbol you added has
returned to normal display.

Save and Label 8 From the File menu, select Save.
the Diagram:

9 Type the diagram label “Diagramming Technique.”

10 Click OK. The diagram label appears in the window title
bar. (See Figure 5-3.)

Note

□ The only difference between saving a new diagram and saving an existing one is
that you have to give the new diagram a name in the dialog box that is

Diagramming and Repository Basics

69

displayed. The only restrictions on diagram labels are that they cannot exceed
128 characters and that they must be unique within the diagram type of the
project. To change a diagram's name select Save With New Name from the File
menu. After that, the process is identical to that described for a new diagram,
above.

Figure 5-3 New Diagram with Symbols Added

Stylizing a Symbol
Change into Selection 1 Click the � button on the control bar or press the
Mode: ESC key. This changes the cursor, indicating that

Visible Analyst is now in selection mode.

Use the Object Menu: 2 Position the cursor over the symbol labeled First and click
on it with the right mouse button. A menu appears with
functions that can be performed on the symbol.

3 Select Stylize.

Diagramming and Repository Basics

70

Stylize the Symbol: 4 In the dialog box, adjust the level of boldness by double-

clicking the right-hand arrow on the scroll bar under the
word Boldness.

5 Click the Apply button. The symbol in the box indicates

how your symbol looks. (See Figure 5-4.)

Figure 5-4 Stylize Symbol Dialog Box

6 Click the OK button and the stylization you selected is

applied to the symbol on the diagram.

Moving, Cutting, and Pasting a Symbol
Select the Symbol: 1 Position the cursor inside the symbol Second and click the

left mouse button. The symbol changes color to show that
it is now the selected or current object.

Move the Symbol: 2 Position the cursor inside the symbol Second and click

and hold the left mouse button. Move the symbol by
dragging the box around. A rectangular outline, called the
“bounding box,” appears in place of the symbol. Release
the mouse button when your symbol is where you want it

Diagramming and Repository Basics

71

or press the ESC key if you want to cancel the move
operation.

Cut and Paste the 3 While the symbol is selected, click on the Edit menu.
Symbol:

4 Select Cut. The symbol disappears from the diagram,
but is saved on the Windows Clipboard.

5 Go back to the Edit menu and select Paste. The symbol

is displayed surrounded by a dashed outline, indicating
the symbol is the current object. Position the cursor within
the outline of the symbol, hold the left mouse button
down and drag it to the desired location on the diagram.
Release the mouse button.

Deselect the Symbol: 6 Click on an empty space on the diagram with the left

mouse button. This deselects the highlighted current
object.

Notes

□ You can use the Windows keyboard shortcuts for the editing functions to speed
up these operations and to edit in dialog boxes.

□ When selecting or changing line types and line terminator choices, Visible

Analyst performs differently depending on what state it was in when the
modifications were entered. When no diagram is selected and the line types are
changed, the default choices are modified. When a diagram is selected but no
line is highlighted, the choices remain in effect for the diagram. If a line is
selected, the change only impacts the selected line.

Adding Lines to a Diagram
Now add a line to connect the two symbols you have drawn.

Turn on Auto Label 1 Open the Options menu. There should be a check mark

Lines: next to the selection Auto Label Lines. This indicates
that you are automatically prompted to label a line as
soon as it is drawn. If there is no check mark next to the
selection, set the option by clicking on the selection.

Set Line-Drawing 2 Click the first line button in the diagram tools tool bar to
Mode: put Visible Analyst in line-drawing mode. The cursor

changes to indicate this.

Diagramming and Repository Basics

72

Draw the Line: 3 Position the cursor on the edge of the symbol labeled First
that is nearest to the symbol labeled Second.

4 Press and hold the left mouse button.

5 Drag the line to the edge of symbol Second. The way the

line stretches between the cursor and the start-point is
sometimes called “rubber-banding.”

6 Release the mouse button to signal the end of the line. If

you release the mouse button within the symbol, the line
is connected automatically to the edge of the symbol.
When the line is completed, it changes color and handles
appear at the endpoints. (See Figure 5-5.) A dialog box
appears for labeling the line.

Figure 5-5 A Line With Its Handles

Label the Line: 7 Type “Flowname.”

8 Click OK to draw the label next to the line on the
diagram.

Now that you know how to add a line to a diagram, you can adjust the position and
appearance of that line.

Note

□ If you want to move the name of a line, select the name by positioning the
cursor on the text and press and hold the left mouse button. Drag the label to the
desired position and then release the mouse button.

Selecting and Adjusting Lines
Return to Selection 1 Click the � button on the control bar or press the
Mode: ESC key.

Select the Line: 2 If the line is not currently highlighted, click on any point

Diagramming and Repository Basics

73

along the line. When a line is selected, you can see its
handles, little boxes at the end of each segment that allow
you to move the segments by dragging the handles with
the mouse.

Set Line 3 From the Options menu select Line Settings.
Characteristics:

4 Choose Single Dashed for Line Type.

5 Click OK. The line is redrawn using the new type.

Changing Line Settings as above allows you to adjust the line characteristics for the selected
line. If no line is selected, you choose the characteristics for the next line you draw.

Adding Caption Text to a Diagram
You can add text in the form of a title or a paragraph. This text is used to enhance the
definition of your diagram or its parts. When entering the text, press ENTER to continue the
text on another line.

Set Caption Text Mode: 1 Click on the large T (text) button on the control bar.

Select the Caption 2 Position your cursor at the top of the diagram and click
Position: with the left mouse button.

Enter the Text: 3 Type “Unstructured Diagram #1.” Then press ENTER

to move the cursor down to the next line. Type “Diagram
Drawing Techniques.”

4 Click OK.

5 Click the � button on the control bar or press the ESC

key to return to editing mode.

Change the Caption 6 Click the right mouse button over the caption you
Characteristics: just added to display the Object menu for the caption.

7 Select Text Settings from the Object menu.

8 Select Times New Roman in the box labeled Typeface.

Refer to Figure 5-6.

Diagramming and Repository Basics

74

Figure 5-6 Text Settings Dialog Box

9 Change the Point Size to 16 in the Size box.

10 Select Bold in the box labeled Style.

11 Select Center in the box labeled Format Options.

12 Click the OK button and then deselect the text. The
completed diagram should appear more or less like that
shown in Figure 5-7.

Diagramming and Repository Basics

75

Figure 5-7 The Completed Diagram

Note
□ The “T” icon text should not be used to define symbols or lines. Only symbol

labels are entered into the repository for rules based components. To label an
unlabeled diagram object, click the object with the right mouse button and
choose Change Item from the object menu.

OTHER DIAGRAMMING FUNCTIONS
Now we take a look at some of the other functions available to help you create Visible
Analyst diagrams.

Colors
Different screen objects displayed in different colors makes it easier to distinguish them on
the screen. You have a number of choices available that you can experiment with to find a
pleasing combination.

Diagramming and Repository Basics

76

Open the Menu: 1 To change the colors of your symbols, lines, and text

select Colors from the Options menu.

Change the Color: 2 Under Object Type, select Symbol Color. Select a color
by clicking on one of the color squares or by adjusting the
slide bars.

3 Click OK. If no objects are selected, the default colors are

set. If objects are selected, only those items are changed.

Displaying and Hiding Symbol Labels
It is sometimes easier to see the overall layout of objects on a diagram if there are no text
labels distracting your attention from the structure the diagram represents. Visible Analyst
allows you to hide the labels of symbols and lines if you wish to do so.

Hide the Labels: 1 From the View menu, click Show Symbol Names. The

symbol labels should disappear. (A check mark in front of
this selection indicates that the symbol names are shown;
otherwise they are not shown.)

Redisplay the Labels: 2 From the View menu, select Show Symbol Names

again to reset the names to show.

Note
□ Turning line or symbol labels off is not the same as not labeling them. A line or

symbol that has never been labeled does not exist as far as the repository is
concerned.

Changing Text Characteristics for a Block of Diagram Objects
Select a Group of 1 Draw a box around the symbols on the diagram. Place the
Objects: cursor in the upper left corner of the diagram and hold the

left mouse button down while you drag the mouse to the
lower right corner of the diagram. A bounding box
rectangle is created as you drag the mouse. After you
release the button, all items completely inside the
bounding box are highlighted.

Change the Text: 2 From the Options menu select Text Settings.

Diagramming and Repository Basics

77

3 Choose Symbol Labels in the box marked Text Type.

4 Choose a Typeface and Point Size.

5 Return to the Text Type box and choose Line Labels.

6 Choose a Typeface and Point Size.

7 Click OK.

8 Click in an empty area outside of the bounding box to
deselect it.

The symbol labels and line labels for the items completely contained in the box change to the
new text settings.

Note

□ The text values of all items in the bounding box are set by this function. Those
text types that you do not explicitly set revert to the default values shown in the
dialog box.

CLOSING A DIAGRAM
To close a diagram:

Activate the Control 1 Click on the diagram Control menu button (not the
Menu: Analyst Control menu button) in the top left corner of

the diagram window, or to the left of the File menu when
the diagram is maximized. There is also a Close
Diagram function on the File menu.

2 Select Close. If your diagram has not been maximized,

meaning that it occupies less than the entire Visible
Analyst workspace, you can close the diagram by double-
clicking on the Control menu button.

3 Visible Analyst prompts you to Save the diagram. Click

Yes to close the diagram. Selecting No closes the diagram
without saving any changes made since the last Save
operation was performed.

Collaboration Diagramming

78

THE TUTORIAL PROJECT
For the rest of this tutorial, you add diagrams to an existing project. We created the project to
save you the time it would take to enter the repository information and create the diagrams
that are necessary to demonstrate some of the more advanced features of Visible Analyst. To
access the TEST project:

1 Choose Select Project from the File menu, or click the File

Cabinet button on the control bar.

2 Select TEST from the list displayed on the Select Project dialog
box and click OK.

TEST is now the current project. As when you created the first project, the lower right corner
of the Visible Analyst screen displays the name of the current project.

CONCLUSION
Now that you understand the basic methods for drawing symbols, lines, and text in Visible
Analyst, as well as how to change some of the optional settings, you are ready to build more
significant diagrams.

We have provided diagrams to help demonstrate some of the structured modeling capabilities
of Visible Analyst. The objects on the diagrams and entries in the repository have been filled
in for you.

Component Diagrams

 Lesson

 COMPONENT DIAGRAMS

OVERVIEW
Component diagrams allow you to show the structural relationships between system
components. According to the UML 2.x specification, components are "autonomous,
encapsulated units within a system or subsystem that provide one or more interfaces".
Although the specification does not strictly state it, components are larger design units that
represent things that will typically be implemented using replaceable modules. Components
are strictly logical, design-time constructs that can easily be re-used. By providing a high
level view of the system components, the component diagrams provide an easily understood
overview of the system to developers, analysts and administrators of the system.

Component diagrams can contain components, classes, interfaces and relationships. You can
describe the components you are modeling and the relationships between them by drawing
them onto a diagram. Each diagram or view can show an arbitrarily large or small part of your
component model. You can show multiple views of your component model by including
different combinations of components in the repository.

All information you place on a component diagram is, of course, captured by the repository
and is available to your class model, your process model (data flow diagrams), your structure
charts, and your data model (entity relationship diagrams), where applicable. The Analyze
function can assist you in determining any syntax or definition problems with your object
model.

COMPONENT DIAGRAM SYMBOLS
The component symbol is the primary graphic used when creating a component model. When
a component is added to a diagram, an entry is created in the repository so that additional
information can be specified regarding the component, in order to complete its definition. The
class symbol is also used on a component diagram.
Each component is represented by a rectangle with an icon is the upper right corner as shown
below.

Component Diagrams

Figure 16-1 Component and Class Symbols

If you want to show the internal structure of a component, use the Explode function on the
right mouse click object menu, or select Nest on the File menu. This allows you to create a
new diagram with an outline of the component in which you can add the internal elements.
These internal elements, consisting of classes with their methods and attributes expose the
“black-box” properties and operational details of the component object.
Because component symbols are container objects, similar to Pools and System Boundaries,
they have no default color assigned. Select a component symbol and choose Colors from the
Options menu to choose a color for the component.

The Visible Analyst allows users to include Note symbols on a component diagram or within
a component object. Notes do not maintain a repository entry and are only used as a textual
reference on a diagram. Use the Note Link line type on the Control Bar to link the note to a
component or class.

Figure 16-2 Note Symbol

INTERFACE LINES
An interface represents the formal contract of services a component provides to its
consumers/clients. These interfaces are the basis for “wiring” the components together as
explained in the UML 2.x specification, and Visible Analyst uses the UML 2.x notation for
defining an interface. A line with a complete circle at its end (lollipop) represents an interface
that the component provides. Interface lines with only a half circle at their end (socket)
represent an interface that the component requires. In both cases, the name of the interface is
placed above the interface line.

Component Diagrams

Interface lines are only displayed on a diagram and do not maintain an accessible repository
entry. Interfaces that are attached to a component can be included when generating a
component report.

Figure 16-3 Component Symbol with Provided (left) and Required (right) Interface
Lines

There are several ways to add an interface to a component:

• Right-click on a component and choose either Add Provided Interface or Add
Required Interface from the context menu.

• Click on an interface icon on the control bar and then click within a component; the

interface will be drawn automatically. For a provided interface click near the left side
to add to the left or near the top to add to the top. For a required interface, click near
the right side or bottom.

• Click on an interface icon on the control bar and then press and hold the left mouse

button down where you want the interface to begin and then drag the mouse until it
is inside the component symbol and release the button.

When labeling the interface, you can choose to show a port which provides a way to model
how a component's provided/required interfaces relate to its internal parts. A port is displayed
as a square at the component end of an interface.

You can connect the required interface of one component to the provided interface of another
by pressing the left mouse button on the endpoint of the interface and dragging it until it
connects with the endpoint of another interface.

The UML 2.x specification describes the assembly and a delegation connector types as
follows:

Component Diagrams

Assembly Connections

An assembly connector is a connector between two components that defines that one
component provides the services that another component requires. The assembly connector
defines the connection from a required interface or port to a provided interface or port. This
Assembly Connection is drawn with the Provided Interface line (with the lollipop) connected
to a Required Interface line (with a socket).

Figure 16-4 Example Assembly Connector between 2 Component Objects

Delegation Connection
A delegation connector is a connector that links the external contract of a component (as
specified by its ports) to the internal realization of that behavior by the component’s parts. It
represents the forwarding of signals (operation requests and events): a signal that arrives at a
port that has a delegation connector to a part or to another port will be passed on to that target
for handling. The line is drawn from the port to the class or component as shown in Figure 16-
5. Delegation lines are not normally named, but are recognized by the Visible Analyst Rules
when the diagram is analyzed.

Figure 16-5 A Delegation Connector from the port of VehicleEntry to Vehicle

Component Diagrams

Dependency Line
A dependency relationship line is a dashed line with an open arrowhead as shown in figure
16-6. The dependency relationship is used to connect components or classes, and signifies that
a single or a set of model elements requires other model elements for their specification or
implementation. It is not a direction of a process but a direction of a relationship. Within a
component object, use the dependency relationship to relate classes or components. In the
example below, the Inspection Station relies on the information from the Vehicle class. While
a dependency line may have a label associated with the line, no editable repository entry is
created for these line types. The dependency lines are recognized by the Visible Analyst Rules
when the diagram is analyzed.

Figure 16-6 Dependency Relationship Line

COMPONENT INTERNAL STRUCTURE
The internal structure of a component or “white-box” view of the component as referenced in
the UML 2.x specification can be drawn on a linked “child” diagram in the Visible Analyst.
This parent-child linkage is similar to the diagram linkage when exploding a data flow
process to create a child diagram. Each component can be “exploded” to create a new
component diagram to display additional internal structure detail.

When a component symbol is exploded, all interfaces connected to the “parent” component
are attached to the expanded component symbol on the child diagram, as shown in Figure 16-
7. When the child diagram is saved, you are prompted to create a Nest relationship between
the new interface component diagram and parent component symbol.

Component Diagrams

Figure 16-7 Exploded Component Symbol with Attached Connectors

THE DMV COMPONENT SCENARIO
Many states and countries periodically require vehicle inspections for safety and
environmental reasons. The owner of the vehicle is required to bring the vehicle to a certified
inspection station, where a certified inspector will evaluate the safety and environmental
features of the vehicle. If any deficiencies are found in either test, the vehicle fails the
inspection. In most cases, the owner is allowed to return for a follow up inspection after the
deficiencies have been corrected. Once the vehicle passes the tests, an inspection sticker is
issued for the vehicle indicating that the vehicle passed the inspection. The vehicle details and
results of the inspection are then communicated to the Department of Motor Vehicles to be
recorded in the DMV database after each vehicles inspection.

Drawing the Component Diagram

Set the Zoom Level: 1 Set the zoom level to 66% from the View menu.

Open a new: 2 Select New Diagram from the File menu, choose
Component as the diagram

Diagram:

Type and click OK.

3 Click the first icon in the Control Bar, component, add a
component symbol to the diagram, and label the
component “Vehicle Testing”. Add a second component
symbol to the right of “Vehicle Testing” and label it
“DMV Vehicle Database System”. Click the Esc key to
exit drawing mode.

Component Diagrams

Add the Interfaces: 4 Right mouse click on the component “Vehicle Testing”
and choose the Add Provided Interface option. The

interface is automatically drawn attached to the left side of the component
symbol. Label the interface “VehicleEntry”. Confirm that the Show Port
option is checked.

Right mouse click on the “Vehicle Testing” symbol again, but choose Add
Required Interface to draw the interface line attached to the right side of
the symbol. Label the interface “Vehicles”.

Add a provided interface to the component object “DMV Vehicle Database
System” and label the interface “Vehicles”

NOTE: You can select the line types from the Control Bar and manually
draw the interface lines connected to the component symbol. The interface
lines can be moved to any position on the component symbol by dragging
the interface line to the selected position.

5 From the File menu, select Save, and save the diagram

with the name Vehicle Testing Components”.

Create an Assembly
Connection: 6 Left mouse click on the required interface connected to

the “DMV Vehicle Database System” component so that
the line handles, as explained in Chapter 5 (see figure5-5),
are displayed. Left mouse click on the left line handle,
hold down the mouse button, and drag the line so that the
lollipop is within the socket, as shown in figure Y-4.

NOTE: While making the line longer, the line may not be
drawn completely horizontal. While drawing the line, the
line becomes dashed. While the line is dashed, click the
“S” key on the keyboard to Snap the line and make it
horizontal.

Analyze the Diagram: 7 Select Analyze from the Diagram menu to check the

diagram for the correct syntax and click OK. The error
message displayed points out that no required interface
was attached to the component “DMV Vehicle Database
System”.

To correct this error, right mouse click on the “DMV
Vehicle Database System” component, choose Add

Component Diagrams

Required Interface, and label the interface
“VehicleControl”.
Save the diagram and run the Analyze feature again to
confirm that the diagram is correct.

Figure 16-8 Completed Top-Level Component Diagram

The DMV Vehicle Testing system is composed of both safety and environmental components.
These internal component objects may already exist as classes or other component objects in
the project, or they can be added directly onto the new component diagram. The first action is
to explode the “Vehicle Testing” component and create the child diagram.

Explode a Component: 1 Right mouse click on the component “Vehicle Testing”
and choose

Explode. Click the Create New Diagram button to
create the new component diagram.

NOTE: The Explode option is also available by selecting
Nest from the File menu.

Add Internal Structures: 2 Click the first symbol icon and add the component

“Safety Inspection” inside the “Vehicle Testing” symbol,
adding the symbol towards the top of the component.

Add a second component symbol below the first symbol,
and label it “Environmental Inspection”.

Add a Provider interface labeled “VehicleEntry” and a
Required Interface labeled “Vehicles” to both component
symbols.

Add Classes as Structures: 3 Click the class icon, the second symbol icon, and add a

class symbol between the component symbols, labeled as
“Vehicle”.

Save the Diagram: 4 From the File menu, select Save, and save the diagram

with the name “Vehicle Testing Internal Components”.

Component Diagrams

Add Delegate Lines: 5 Click the Delegate line icon, the third line icon, and draw
a delegate line from the “VehicleEntry” interface port to
the component “Safety Inspection” provider interface
lollipop. Draw a second line from the “VehicleEntry”
interface port to the “Environment Inspection” interface
lollipop.

 Draw delegate lines from the required interface sockets
attached to the “Environmental Inspection” and Safety
Inspections” components to the “Vehicle” required
interfaces port.

 NOTE: Delegation lines indicate that messages and
signals flow from the interface to the internal
components.

Add a Dependency Line 6 Click the Dependency line icon, the fourth line icon, and
draw two dependency lines from the class “Vehicle” to
the component “Safety Inspection” “and to the
component “Environmental Inspection”. Label both
lines” VehicleDetails”.

 NOTE: These dependency lines indicate that the
components depend on an element or group of elements
listed in the class.

Analyze the Diagram: 6 Select Analyze from the Diagram menu to check the
diagram for the correct syntax and click OK.

Component Diagrams

Figure 16-9 The Completed Internal Structure Component Diagram

Where To Go From Here

	INTRODUCTION
	FAST TRACK USERS
	Note

	OVERVIEW OF MDA CONCEPTS
	The Basic MDA Models
	Visible Analyst Choices

	VISIBLE ANALYST OVERVIEW
	Figure 1-1 Visible Analyst Workspace
	Windows Version Features
	The Application Workspace
	Windows Configuration
	Multiple Document Interface
	Figure 1-2 Visible Analyst Multiple Document Interface
	Selecting a Diagram Object
	Left Mouse Button
	Right Mouse Button

	Notes
	Double-Click
	TAB Key
	Selecting a Block
	Deselecting Objects

	Shortcut Keys
	Control Bar
	Figure 1-3 The Control Bar for Entity Relationship Diagrams with All Tool Bars Displayed
	Help Bar
	Object Browser

	Menus
	File Menu
	Edit Menu
	View Menu
	Options Menu
	Repository Menu
	Diagram Menu
	Tools Menu
	Window Menu
	Figure 1-8 Cascaded Multiple Diagram Windows
	Help Menu
	Note

	Lesson Structured Modeling Techniques
	OVERVIEW
	STRUCTURED PLANNING
	STRUCTURED DESIGN
	OBJECT-ORIENTED MODELING
	OBJECT CONCEPTS
	STATE TRANSITION (DYNAMIC) MODELING
	OBJECT MODELING AND PROCESS MODELING
	DATA AND OBJECT RELATIONSHIPS
	LIBRARY MODEL

	Lesson
	Diagramming and Repository Basics
	INTRODUCTION
	CREATING A NEW PROJECT
	Note
	Figure 5-1 New Project Dialog Box

	CREATING A NEW DIAGRAM
	EDITING A DIAGRAM
	Adding Symbols to a Diagram
	Note

	Stylizing a Symbol
	Figure 5-4 Stylize Symbol Dialog Box

	Moving, Cutting, and Pasting a Symbol
	Notes

	Adding Lines to a Diagram
	Figure 5-5 A Line With Its Handles
	Note

	Selecting and Adjusting Lines
	Adding Caption Text to a Diagram
	Figure 5-6 Text Settings Dialog Box
	Figure 5-7 The Completed Diagram

	OTHER DIAGRAMMING FUNCTIONS
	Colors
	Displaying and Hiding Symbol Labels
	Note

	Changing Text Characteristics for a Block of Diagram Objects
	Note

	CLOSING A DIAGRAM
	THE TUTORIAL PROJECT
	CONCLUSION

	Lesson
	COMPONENT DIAGRAMS
	OVERVIEW
	COMPONENT DIAGRAM SYMBOLS
	Figure 16-1 Component and Class Symbols

	INTERFACE LINES
	Figure 16-3 Component Symbol with Provided (left) and Required (right) Interface Lines
	Assembly Connections
	Figure 16-4 Example Assembly Connector between 2 Component Objects
	Figure 16-5 A Delegation Connector from the port of VehicleEntry to Vehicle

	COMPONENT INTERNAL STRUCTURE
	THE DMV COMPONENT SCENARIO
	Drawing the Component Diagram
	Figure 16-8 Completed Top-Level Component Diagram

